
Minimum Genus and Maximum Planar Subgraph:
Exact Algorithms and General Limits

of Approximation Algorithms

Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)
des Fachbereichs Mathematik und Informatik

der Universität Osnabrück

vorgelegt von
Dipl.-Math. Ivo Hedtke

geboren am 30. September 1986 in Saalfeld/Saale

23. Juni 2017

Contents 3

Contents

1 Introduction 5
1.1 Mathematical Preliminaries . 5

1.1.1 Graph Theory . 5
1.1.2 Group Theory . 7
1.1.3 Surfaces, Embeddings, Facial Walks and the Face Traversal Procedure . . 8
1.1.4 Linear Programming and Satisfiability Formulations 10
1.1.5 Approximation Algorithms . 12

1.2 Motivation . 13
1.3 Overview . 15
1.4 Test Instances and Used Frameworks . 17

2 Exact Algorithms for the Minimum Genus Problem 21
2.1 Introduction . 21
2.2 Basic Ideas for SAT and ILP Formulations . 23
2.3 Exponentially Sized Formulations: Basic ILP and SAT Models 24
2.4 Polynomially Sized Formulations: Index and Betweenness Reformulation 27
2.5 Speed-Up Techniques . 29
2.6 A Minimum Genus Computation Framework . 34
2.7 Experimental Evaluation: Different Formulations, Overall Practicality, and Com-

parison to Existing Genus Computations . 35
2.8 Minimum Genus on Non-Orientable Surfaces . 41
2.9 Conclusion and Open Problems . 43

3 Limits of Greedy Approximation Algorithms for the Maximum Planar Sub-
graph Problem 45
3.1 Introduction . 45
3.2 Maximality . 46
3.3 Algorithms Inspired by Planarity Tests . 46
3.4 MPS is NP-hard: A Simple Proof . 50
3.5 Algorithms Inspired by Cactus Structures . 51
3.6 Algorithms Based on Decomposition . 58
3.7 Alternative Proof for the Cactus Algorithm . 59
3.8 Summary and Conclusion . 62

4 Exact Algorithms for the Maximum Planar Subgraph Problem 65
4.1 A Summary of Known Planarity Criteria . 65
4.2 MPS via Kuratowski Subdivisions . 69
4.3 Stronger Formulations using Additional Minors 73
4.4 Planar Graphs and Total Orders . 74

4 Contents

4.5 A Formulation based on Theta Graphs . 78
4.6 Euler Characteristic and Simulated Facial Walks 81

4.6.1 Exponentially Sized Formulations: Basic ILP and SAT Models 81
4.6.2 Polynomially Sized Formulations and Speed-Ups 84

4.7 Experimental Evaluation: Different Formulations and Overall Practicality 87
4.8 Summary and Conclusion . 93

Bibliography 95

Chapter 1. Introduction 5

Chapter 1

Introduction

This chapter collects the fundamental background for the following three chapters as well as an
introduction to the problems we study in this thesis. Furthermore, an overview of the remaining
text is given. Finally, we discuss four classes of test instances we used for our experimental
evaluations.

Parts of this thesis were published in

• Stephan Beyer, Markus Chimani, Ivo Hedtke, and Michal Kotrbč́ık. “A Practical Method
for the Minimum Genus of a Graph: Models and Experiments.” In: Experimental Algo-
rithms - 15th International Symposium, SEA 2016, St. Petersburg, Russia, June 5-8, 2016,
Proceedings. Ed. by Andrew V. Goldberg and Alexander S. Kulikov. Vol. 9685. Lecture
Notes in Computer Science. Springer, 2016, pp. 75–88. isbn: 978-3-319-38850-2. doi:
10.1007/978-3-319-38851-9_6

Michal Kotrbč́ık presented the results at the 15th International Symposium on Experimental
Algorithms (2016) in St. Petersburg.

• Markus Chimani, Ivo Hedtke, and Tilo Wiedera. “Limits of Greedy Approximation
Algorithms for the Maximum Planar Subgraph Problem.” In: Combinatorial Algorithms
- 27th International Workshop, IWOCA 2016, Helsinki, Finland, August 17-19, 2016,
Proceedings. Ed. by Veli Mäkinen, Simon J. Puglisi, and Leena Salmela. Vol. 9843. Lecture
Notes in Computer Science. Springer, 2016, pp. 334–346. isbn: 978-3-319-44542-7. doi:
10.1007/978-3-319-44543-4_26

Tilo Wiedera presented the results at the 27th International Workshop on Combinatorial
Algorithms (2016) in Helsinki.

1.1 Mathematical Preliminaries

In this section we give fundamental definitions and review results we will use later in the text.
The familiar reader can skip this section safely.

For convenience, we write [k] := Zk = {0, 1, . . . , k−1}; addition and subtraction are modulo k.
By] we denote the disjoint union of two sets.

1.1.1 Graph Theory

Graphs. Our terminology is standard and consistent with [MT01] and [KV12]. Unless otherwise
stated we always consider undirected, simple, finite, connected graphs G = (V,E) on finitely
many vertices/nodes V and edges E.

https://doi.org/10.1007/978-3-319-38851-9_6
https://doi.org/10.1007/978-3-319-44543-4_26

6 Chapter 1. Introduction

An edge e ∈ E between the vertices v and u is denoted as e = vu = uv. In this case v and u
are called incident to e. Two vertices are adjacent if and only if there is an edge between them.
Two adjacent vertices are called neighbors. The set of all neighbors of a vertex v is denoted by
N(v).

Multiple edges between the same pair of nodes are called parallel. An edge e = vv is called a
(self-)loop at v. Graphs without parallel edges and selfloops are called simple.

In a simple graph, the number of neighbors of a vertex v is called the degree of v and denoted
by dv. The maximum vertex degree in a graph G is denoted by ∆(G). A vertex of degree zero is
called an isolated vertex. A graph whose vertices have the same degree d is called d-regular. A
3-regular graph is called cubic.

By V (G) and E(G) we denote the vertex set and edge set of a graph G, respectively. The
density of a graph (V,E) is defined as |E|/|V |, the edges per node.

Let k be an arbitrary number. A k-coloring of a graph is map c : V → [k] such that for each
edge e = vw we have c(v) 6= v(w). A graph is k-colorable if there exists a k-coloring for it.

Subgraphs. Let G and H be graphs. If V (H) ⊆ V (G) and E(H) ⊆ E(G) we call H a
subgraph of G. For a subset S ⊆ V (G) we define the induced subgraph G[S] = (S,ES) by
ES := {vu ∈ E(G) : v, u ∈ S}. For a subset S ⊆ E(G) we define the induced subgraph
G[S] = (VS , S) by VS := {u, v ∈ V : vu ∈ S}. A subgraph H of G with V (G) = V (H) is called a
spanning subgraph.

A path in G is a sequence of pairwise distinct vertices v1v2 · · · v` such that vivi+1 ∈ E for all
i = 1, 2, . . . , `− 1. If we add the edge v`v1 to such a path we obtain a cycle. A k-path is a path
of k edges. A Hamiltonian path (Hamiltonian cycle) is a path (cycle) that visits every vertex of
the graph exactly once, respectively.

The length |c| of a cycle c is the number of its edges. Let G be a graph and CG be the set of
the cycles of G. The girth of G is defined as min{|c| : c ∈ CG}.

The complete graph Kn is the graph on n vertices in which any two vertices are adjacent.
The complete bipartite graph Kn,m is the graph with vertices {v0, . . . , vn−1}] {u0, . . . , um−1}
and edges {viuj : i ∈ [n], j ∈ [m]}. The graph K−n is defined as Kn where a single edge is deleted.

The Wheel of n spokes is the graph Wn obtained from a cycle Cn on n vertices by adding a
new vertex and joining it to all vertices of Cn.

A triangle is a K3 subgraph. A cactus structure is a graph whose cycles (if any) are triangles.

Operations on Graphs. The Cartesian product of two graphs G and H is the graph G�H with
vertex set V (G) × V (H), in which two vertices (u, v) and (u′, v′) are adjacent if either u = u′

and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G). See Figure 2.A for an example of K3�K3�K3.
For a subset S ⊆ V (G) of the vertices of a graph G we write G− S or G \ S to denote the

graph G[V (G) \ S]. If S = {s} has only one element we also use the shorthand notation G− s or
G \ s.

For a subset S ⊆ E(G) of the edges of a graph G we write G − S or G \ S to denote the
graph obtained from G by deleting the edges in S. Again, we write G− s or G \ s if S = {s}.

Let u and v be two nodes of G. By G+ uv we denote the graph
(
V (G), E(G) ∪ {uv}

)
.

Let G be a graph and e = uv be one of its edges. By G/e we denote the edge contraction of
e which is obtained from G by removing the edge e and identifying its ends u and v into a new
vertex.

Connectivity. A graph is connected if there is a path between any two of its vertices. A connected
component is a maximal connected subgraph.

Chapter 1. Introduction 7

A graph G is k-connected if it has at least k + 1 vertices and for any subset S ⊆ V (G) of at
most k − 1 vertices, G− S is connected.

A biconnected component of a graph G is a maximal 2-connected subgraph of G.

Spanning Trees. A tree is a connected graph without cycles. A set of vertex-disjoint trees is
called a forest. A spanning subgraph that is a tree is called a spanning tree.

Minors and Subdivisions. A graph G is a minor of a graph H if it can be obtained from H by a
series of the following operations: delete a vertex, delete an edge, or contract an edge.

Given a graph G and one of its edges e = vw. We say that a graph H results from G by
subdividing e if V (H) = V (G)] {x} and E(H) = {vx, xw} ∪ E(G) \ e. A graph resulting from
G by successively subdividing edges is called a subdivision of G.

A Kuratowski subdivision is a K5 or K3,3 subdivision.

Darts. The notation of “darts” is borrowed from [Fox+16].
Let E be the edge set of a graph G. The dart set A(G) is defined as E × {+1,−1}. For an

edge e ∈ E, the darts of e are (e,+1) or e+ and (e,−1) or e−, respectively. We think of the darts
of e as oriented versions of e, one for each orientation. The reversed dart rev((e, i)) is defined as
(e,−i). Darts are also known as “directed edges” and “halfedges”. We use the notation u→ v
to denote a dart with orientation from u to v. When the context is clear, we sometimes simply
write uv.

Let v be a vertex of a graph. By δ+(v) we denote the set of out-going darts, i.e., the set
{vx ∈ A}. By δ−(v) we denote the set of in-going darts, i.e., the set {vx ∈ A}.

Non-Planar Core. The non-planar core reduction by Chimani and Gutwenger (see [CG09])
reduces a given graph to a core where each maximal planar 2-component is replaced by a
(weighted) edge. We will use this core as input for our algorithms whenever the problem is
susceptible to such a reduction. Here we give a formal definition and cite some known results.
The presentation in this paragraph is based on [CG09].

Definition 1.1 (planar 2-component). 1.1Let s, t ∈ V be two distinct vertices of a 2-connected,
non-planar graph. An edge-induced subgraph C = G[EC] is called a planar 2-component (or
planar st-component) of G if C + st is planar and V (C) ∩ V (G[E \ EC]) = {s, t}. A single edge
is called a trivial planar 2-component.

A non-trivial planar 2-component C of G is called a maximal planar 2-component of G if and
only if there is no planar 2-component C ′ of G with C (C ′. y

Definition (non-planar core). The (weighted) non-planar core (C, w) of G is a graph C with a
weight function w : E → N such that C is a copy of G in which each maximal planar st-component
C of G is substituted with a virtual edge eC = st with weight w(eC) = mincuts,t(C), and each
non-virtual edge e has weight w(e) = 1. y

1.1.2 Group Theory

Cayley graphs. We follow [Jun13, Sect. 9.4] in his definition of Cayley graphs. He also shows
some interesting results in the field of Cayley graphs. We use them as an important class of test
instances in the next chapter. See Section 2.1 for an example.

Definition (Cayley graph). Let H be a finite group and S (H be a subset of H with the
properties that 1 /∈ S and S = S−1 := {s−1 : s ∈ S}. The Cayley graph CG(H,S) = (H,E) of
H with respect to S has H as its vertices and the edges E = {xy : xy−1 ∈ S}. y

8 Chapter 1. Introduction

(a) (b) (c)

T2

T1

T2

T1

Q

Figur1.A e 1.A: (a) A surface with two triangles T1 and T2. (b) A handle that is created by deleting the
interiors of T1 and T2 and identifying the stroked, dashed and dotted darts each. (c) A crosscap that is
created by deleting the interior of a quadrangle Q and identifying the stroked and dashed darts each.

Definition (generating subset). A generating subset of a group is subset such that every
element of the group can be expressed as the combination of the elements of the subset and their
inverses. y

An alternative, more practical definition is given by Cayley himself in [Cay78]: Let H be a
finite group and Ω be a generating subset. The Cayley graph is a directed graph CG(H) = (H,A)
with H as its vertices and the arcs A =

⋃
ω∈ΩAω where each Aω = {h → hω : h ∈ H} is

colored in a different color cω. The colors in Figure 2.A are induced by the three generators of
Z3

3
∼= Sym((1, 2, 3), (4, 5, 6), (7, 8, 9)).

1.1.3 Surfaces, Embeddings, Facial Walks and the Face Traversal Procedure

Surfaces. We give a compressed version of the definitions in [MT01, Section 3.1].
A surface is a connected compact Hausdorff topological space which is locally homeomorphic

to an open disc in the plane. We do not give a precise definition, the interested reader is referred
to [MT01, Section 3.1].

By S0 we denote the sphere. It has orientable and non-orientable genus zero. If we add h
handles to S0, we obtain the surface Sh which we refer to as the orientable surface of genus h. If
we add h crosscaps to S0, we get the non-orientable surface Nh of genus h. We continue with
the definition of handles and crosscaps.

Consider the drawing of two disjoint triangles T1 and T2 such that all six sides have the
same length) on a surface S. We form a new surface S′ by deleting the interior of T1 and T2

and identifying T1 with T2 such that the clockwise orientations around T1 and T2 disagree, c.f.
Figure 1.A(b). We say that the surface S′ is obtained from S by adding a handle.

Let Q be a quadrangle with equilateral sides on a surface S. Let S′ be the surface obtained
by deleting the interior of Q and identifying diametrically opposite points of the quadrangle as
shown in Figure 1.A(c). Then S′ is said to be obtained from S by adding a crosscap.

Lemma. [MT01, Theorem 3.1.3] Every surface is homeomorphic to precisely one of the surfaces
Sh (h ≥ 0) or Nk (k > 0).

Embeddings. We give a short description of 2-cell embeddings based on [MT01, Section 3.1] but
our focus is on combinatorial embeddings [MT01, Section 4.1].

A polygon is a plane figure that is bounded by a finite chain of straight line segments closing
in a loop. Let F be a finite set of pairwise disjoint polygons in the plane with all sides (segments)
of unit length. Suppose that all polygons together have m sides σ1, . . . , σm, where m is even.
Orient arbitrarily each of the sides by choosing one of its endpoints as the initial point, and
choose an arbitrary partition of the sides into pairs. From the disjoint union of polygons in F
we form a topological space S by identifying sides in given pairs of the partition in such a way

Chapter 1. Introduction 9

that the orientations agree. We get a compact Hausdorff space S which is locally homeomorphic
to the unit disc in the plane. The sides σ1, . . . , σm and their endpoints determine a connected
multigraph G embedded in S. We say that G is 2-cell embedded in S. The polygons in F are
the faces of G. If all faces are triangles (K3) and G is a graph, we say that G triangulates the
surfaces, and G is triangulated.

The Euler characteristic χ(S) of a surface S is defined as

χ(S) :=

{
2− 2h S = Sh,
2− k S = Nk.

Lemma (Euler’s formula). Let G be a graph which is 2-cell embedded in a surface S. If G
has n vertices, m edges and f faces in S, then n−m+ f = χ(S).

An embedding scheme of a connected graph G is a pair Π = (λ, π) where π = {πv : v ∈ V (G)}
is a rotation system (i.e., for each vertex v, πv is a cyclic permutation of N(v)) and λ : E(G)→
{+1,−1} is a signature mapping which assigns each edge e ∈ E(G) a sign λ(e). If an edge e is
incident with v, then the cyclic sequence e, πv(e), πv(πv(e)), . . . is called the Π-counter-clockwise
ordering around v.

The Face Traversal Procedure. The procedure defined in this paragraph is fundamental for our
work. We will build exact algorithms that simulate this procedure. We also base some definitions
on it.

Definition (Π-facial walks, face traversal procedure). [MT01, p. 93] Let Π = (λ, π) be
an embedding scheme for a given embedding of a graph G. A Π-facial walk is a closed walk on
the dart set of G, defined by the face traversal procedure: By σ ∈ {−1, 1} we denote the current
state of the walk and initialize it with σ := 1. We start with an arbitrary vertex v and an edge
e = vu incident with v. Traverse the edge e from v to u. We are now in u and update the current
state as σ := λ(e)σ. We continue the walk along πσu(e). The walk is completed when the initial
edge e is encountered in the same direction from v to u with σ = 1. y

Definition (positive signature). The signature λ of an embedding scheme (λ, π) for a graph
G = (V,E) is called positive if and only if λ(e) = 1 for all e ∈ E. We write λ ≡ 1 in short. y

Lemma 1.2. 1.2[MT01, Lem. 4.1.4] An embedding is orientable if and only if it is equivalent to an
embedding with positive signature.

For the orientable case the procedure above can be simplified by λ ≡ 1. An example can be
found in Figure 1.B.

Lemma 1.3. 1.3Let e = uv be an edge, SO := A(e) = {uv, vu}, and SN := A(e) × {−1,+1} =
{(uv,−1), (uv,+1), (vu,−1), (vu,+1)}.

a) Let G = (V,E) be a graph embedded on an orientable surface. For each edge e ∈ E the set
of all facial walks uses exactly two elements of SO(e).

b) Let G = (V,E) be a graph embedded on a non-orientable surface. For each edge e ∈ E the
set of all facial walks uses exactly two elements of SN(e).

Proof. See the proof of Theorem 1 in [BD09]. �

10 Chapter 1. Introduction

+

+

+

+

+

+

+

+

a
f

b

cd

e

a
f

b

cd

e

+

+

−

+

+

+

+

+

a
f

b

cd

e

a
f

b

cd

e

Figur1.B e 1.B: A graph with one rotation system but two different signatures and the induced sets of

facial walks. A sample facial walk in the left graph with λ ≡ 1 is (f,+)
+−→ (e,+)

+−→ (b,+)
+−→ (c,+)

+−→
(a,+)

+−→ (f,+), where (v, σ) denotes the current vertex v and the current state σ of the walk. In the
right graph the signature of {b, c} is −1. A sample facial walk in the right graph starting the same edge

as before is (f,+)
+−→ (e,+)

+−→ (b,+)
+−→ (c,+)

−−→ (a,−)
+−→ (d,−)

+−→ (c,−)
−−→ (a,+)

+−→ (f,+).

Definition (Euler genus). The Euler genus eg(Π) of an embedding scheme Π = (λ, π) is
defined as eg(Π) := 2− χ(Π). y

A graph is called a plane graph if an embedding of it in S0 is given. A graph is called planar if
an embedding in S0 exists. A planar embedding of a planar graph is an embedding in S0 together
with one face marked as the outer face or infinite face f∞: Consider an embedding of a planar
graph in S0, which means on a sphere. For each ε we can transform the embedding in such a
way that the graph is located inside a disc of radius ε. This disc is homeomorphic to a plane.
Thus, we have an embedding of the graph in the plane where we now have one unbounded face,
the outer face f∞. A graph is called outerplanar if it is planar and there is a face that visits
each vertex of the graph at least once.

For a given face in an embedding we also call the according facial walk the boundary of the
face. The facial walk of a face is a directed cycle which separates two regions from each other.
Thus, we can speak of the interior and exterior of a face.

1.1.4 Linear Programming and Satisfiability Formulations

Linear Program. We follow Korte and Vygen [KV12] for the basics on linear programming.
A polyhedron in Rn is a set {x ∈ Rn : Ax ≤ b} for some matrix A ∈ Rm×n and some vector

b ∈ Rm. A bounded polyhedron is called a polytope.
Let P be a non-empty polyhedron. If c is a vector for which δ := {c>x : x ∈ P} is finite, then

{x : c>x = δ} is called a supporting hyperplane of P . A face of P is P itself or the intersection
of P with a supporting hyperplane of P .

By c>x we denote the scalar product of two vectors c and x. The Linear Programming
Problem reads as follows:

Linear Programming

Instance: A polyhedron P in Rn and a vector c ∈ Rn.
Task: Find a element x ∈ P such that c>x is maximum, decide that P is empty, or decide
that for all α ∈ R there is an y ∈ P such that c>y > α.

A linear program (LP) is a instance of the Linear Programming Problem. A feasible solution
of an LP is a vector x ∈ P . A feasible solution attaining the maximum value is called optimum
solution.

There are two possibilities when an LP has no solution: The problem is either infeasible (i.e.,
P = ∅) or unbounded. If an LP is neither infeasible nor unbounded it has an optimum solution.

Chapter 1. Introduction 11

We will write LPs as

max c>x

s.t. Ax ≤ b
x ∈ Rn

A constraint is induced by a row a(i) of the matrix A, it is the inequality a(i)x ≤ bi.
In most cases we consider integer linear programs (ILP) where we work over Z: A ∈ Zm×n,

b ∈ Zm, c, x ∈ Zn. The LP obtained from an ILP by switching back to R is called LP-relaxation.

Separation. An LP can be solved in polynomial time, for example by the so-called Ellipsoid
Method. But this requires that the polyhedron is given explicitly by a list of inequalities. But an
LP can be solved in polynomial time (independent of the number of constraints) too, if we have
a so-called separation oracle (with polynomial run-time): a method for the following problem:

Separation Problem

Instance: A convex set P ⊆ Rn and a vector y ∈ Qn.
Task: Either decide that y ∈ P or find a vector d ∈ Qn and a scalar d0 ∈ Q such that
d>x ≤ d0 < d>y for all x ∈ P .

The set {x : d>x = d0} is called a cutting plane.
We will use cuttings planes to solve ILPs by successively solving LP-relaxations and cut away

parts of the polyhedron (by adding new constraints) in hope of obtaining an integer solution.
The Separation problem searches for a cutting plane. Any cutting plane found is added to the
LP and the LP is solved again.

Branch-and-Bound (B&B). We compute cutting planes for two reasons:

1. A class of constraints in our ILP formulation is too large (i.e., exponentially large).

2. The inequalities of the LP-relaxation are not sufficient to yield an integer solution. We
search for valid inequalities (that do not cut integer solutions in the polyhedron) that cut
of those fractional solutions.

For example if we have too many constraints of a certain class we omit them in a relaxed
formulation and use cutting planes by checking if solutions of the relaxed formulation violate
constraints of our class. We repeat the cutting step until an integer solution is found that satisfies
all constraints, or until we cannot find a violated inequality. In this case, we use a branch step.

Consider the case where we deal with a 0/1-ILP, i.e., an ILP where we substituted the x ∈ Zn
constraint by x ∈ {0, 1}n. In a branch step we now choose a variable xi and consider the two
sub-cases xi = 0 and xi = 1. Repeated application produces a enumeration tree of possible cases.
The enumeration tree of all possible variable settings is partially traversed, computing local
upper bounds and global lower bounds, which are used to cut off parts of the tree that cannot
produce the optimum value.

An upper bound (optimum value of the LP-relaxation) for a sub-problem in the enumeration
tree is called a local upper bound. If the solution of a sub-problem is feasible for the original
problem and is an integer solution, its value becomes a global lower bound. Subsequently, we cut
off sub-problems with a local upper bound not greater than the best global upper bound.

The ILP solvers we will use are based on the Branch & Bound method to find integer solution
from LP-relaxations. We will also extend the B&B process with self-constructed separation
oracles when we have a constraint class that is not polynomially bounded.

12 Chapter 1. Introduction

SAT and PBS Formulations. A Boolean formulae uses variables, the constants true, false,
unary, and binary operators. The language of the propositional calculus is recursively defined by

x1 | · · · | xk | true | false | ¬φ | (φ ∨ ψ) | (φ ∧ ψ)

where x1, . . . , xk are the variables and ψ and φ are propositional formulae. Furthermore, we
define φ→ ψ := ¬φ ∨ ψ and φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

An assignment is a map {x1, . . . , xk} → {true, false}. An assignment α is a satisfying
assignment if the substitution of xi by α(xi) in the underlying propositional formulae evaluates
to true.

Definition (conjunctive normal form (CNF)). Let V be a set of variables. A literal ` is a
variable v or the negation ¬v of a variable. A propositional formulae φ is in conjunctive normal
form (CNF) if

φ =
∧

i∈I

∨
j∈Ii

`i,j

where `i,j are literals and I and Ii (for i ∈ I) are finite index sets. y

The definition above allows us to say that a CNF is a conjunction of disjunctions, or a
conjunction of clauses. We call this a SAT formulation.

The Satisfiability Problem is:

Satisfiability (SAT)

Instance: A propositional formulae φ in CNF.
Task: Is there a satisfying assignment for φ?

Most of the problems we consider in this work are optimization problems such as the Linear
Programming problem. A SAT formulation can be used to compute the optimum of a bounded
ILP by iteratively answering the question “Is there a feasible solution x such that c>x ≥ d?” for
given values of d. An alternative is to use a Pseudo-Boolean Satisfiability (PBS) formulation.
Each clause (or constraint) ci has the form∑k

j=1
ai,j`j ≥ b

where `i is a literal and ai,j , b are coefficients in Z. If we have an assignment, we interpret the
literals `i as 1 or 0 if the literal evaluates to true or false, respectively.

A PBS formulation consists of a set of constraints together with an objective function which
in this case is a linear combination of literals with coefficients in Z.

We define the generalization of SAT as

Pseudo-Boolean Satisfiability (PBS)

Instance: A PBS formulation with constraints C and an objective function z.
Task: Find a satisfying assignment α for C that maximizes z.

1.1.5 Approximation Algorithms

As there is no hope to find a polynomial-time algorithm for an NP-hard problem, unless P = NP ,
we consider the important concept of approximation algorithms.

Chapter 1. Introduction 13

Definition (approximation algorithm). Let P be an optimization (maximization) problem
and OPT (J) denote the value of an optimal solution for an instance J of P. An α-factor
approximation algorithm for P is a polynomial-time algorithm A such that

α ·OPT (J) ≤ A(J)

for all instances J of P, where A(J) denotes the solution value of algorithm A for instance J .
We call α the approximation ratio, approximation factor, or approximation guarantee. y

Example. From Euler’s formula we know that a planar graph on n vertices has at most 3n− 6
edges. Any spanning tree for a connected graph on n vertices has n−1 edges. Thus, an algorithm
that computes a spanning tree is a 1

3 -approximation algorithm for the Maximum Planar Subgraph
problem (see next section), as

1

3
· (3n− 6) = n− 2 ≤ n− 1. y

1.2 Motivation

This thesis considers two measures for the non-planarity of a graph. A graph is planar if and
only if it can be embedded in S0. A graph is either planar or non-planar. This classification
can be extended by asking how far away is a graph from planarity. A variety of measures for
non-planarity have been proposed. An overview can be found in [Lie01; Sch14]. Some prominent
measures are

• Crossing Number : What is the minimum number of edge-crossings in any drawing in S0?

• Skewness: What is the minimum number of edges that have to be deleted from the graph
to obtain a planar graph?

• Thickness: What is the minimum number of planar subgraphs whose union is the input
graph itself?

• Minimum Genus: What is the minimum number g such that the graph can be embedded
in Sg.

All of the above problems are NP-hard, see [GJ83; LG79; Man83; Tho89]. We focus on skewness
and minimum genus in this thesis. We will present exact algorithms for both measures as well as
results on limits of approximation algorithms for the Maximum Planar Subgraph problem.

Minimum Genus (MGP)

Instance: Undirected, non-planar graph G.
Task: Find the minimum g such that G can be embedded in Sg.

We denote the minimum genus of a graph G by γ(G). We propose the first ILP and
SAT formulations for the MGP. These formulations allow us to develop the first working
implementations of general algorithms for the problem, other than exhaustive search. Generally,
such modeling approaches are known for several planarity concepts and non-planarity measures
(e.g., crossing number [Chi08; Chi09], skewness [JM96], upward planarity [CZ15]) and often
attain surprisingly strong results. However, for the MGP it is at first rather unclear how to

14 Chapter 1. Introduction

(a) (b) (c) (d)

Figur1.C e 1.C: An embedding of the K5 on the torus. (a) A piece of paper with one side white and one
side red. (b) Transformation of the paper into the surface of the cylinder by identifying the vertical page
borders with each other. (c) Transformation of the cylindrical surface into a torus by identifying the
circular borders with each other. (d) A drawing of the K5 on the white side of the paper. By transforming
the paper as discussed before and identifying the dashed and the dotted edges with each other, we obtain
an embedding of K5 on S1.

capture the topological nature of the question in simple variables. To the best of our knowledge,
there are no known formulations for this problem.

We also extend our formulation to attack the MGP on non-orientable surfaces.

Minimum Non-Orientable Genus

Instance: Undirected, non-planar graph G.
Task: Find the minimum h such that G can be embedded in Nh.

Example. Consider the complete graph K5 on five vertices. It is non-planar but can embedded
on S1 (the torus). As it cannot have genus zero and there is an embedding on the torus, the
minimum genus of K5 is one. In fact, the minimum genus of the complete graph and complete
bipartite graph is known since 1968, see [Rin55; Rin65a].

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
and γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
An embedding of the K5 on the torus is shown in figures 1.C and 2.J (page 33). y

Note that every rotation system of a graph G = (V,E) corresponds to an embedding of the
graph in a surface of some genus, say `. As a surface of genus ` is homeomorphic to a sphere
with ` added handles, it is always possible to embed G in S|E| by using a handle for each edge of
the graph.

In Chapter 2 we investigate exact algorithms that construct a rotation system which induces
a minimum genus embedding.

The second non-planarity measure we discuss is the size of a maximum planar subgraph.

Maximum Planar Subgraph (MPS)

Instance: Undirected graph G.
Task: Find a planar subgraph of G with maximum edge cardinality.

This problem is an equivalent of the skewness problem: If we denote the skewness of a
graph G = (V,E) by µ(G) and the size of a maximum planar subgraph by mps(G) it follows that

|E| = µ(G) + mps(G).

Chapter 1. Introduction 15

It is known to be MaxSNP-hard [Căl+98, Theorem 4.1] and the currently best known
approximation algorithm achieves a ratio of 4/9. The best practical approximation algorithm so
far achieved an approximation ratio of 7/18. Recently, Chalermsook and Schmid [CS17] found a
greedy algorithm that searches for structures denser than triangles. Their algorithm is the now
best greedy approximation algorithm for MPS but it is unknown if it achieve the 4/9-ratio or
better.

An application of MPS is discussed in Tamassia et al. [TDB88]. Graph Drawing is concerned
with the geometric representation of graphs. It is motivated by applications where it is crucial to
visualize structural information as graphs. There are no absolute criteria for nice graph drawings.
Some example for commonly used properties are: minimizing the number of edge crossings or
placing the vertices on a grid. A first step in a drawing algorithm that tries to minimizing the
number of crossings typically is to start with a maximum planar subgraph of the input graph
and then insert the remaining edges as “smart” as possible. Tamassia et al. used this approach
for the automated drawing of entity relationship diagrams on a grid.

Exact algorithms for MPS are typically based on the extraction of Kuratowski subdivisions
to add additional constraints in a cutting plane approach.

Theorem. [Kur30] A graph is planar if and only if it does not contain a K5- or K3,3-subdivision.

Kuratowski subdivisions can be found by linear-time planarity tests as [BM04]. It is also
possible to efficiently extract multiple Kuratowski subdivision at once [CMS07].

In most cases we consider a generalized variant of the Maximum Planar Subgraph problem:

Maximum Weighted Planar Subgraph

Instance: Undirected graph G = (V,E) with weights w : E → N.
Task: Find a planar subgraph H = (VH , EH) of G with maximum weight w(EH).

When developing algorithms, we also use the name Maximum Planar Subgraph for the
problem above, as MPS is contained in it (by using unit weights) and our algorithms are for the
weighted case.

We can extend the non-planarity measure skewness also for weighted graphs (in the same
way as we defined the generalized problem above). We write µ(G,w) in the case of a graph G
with weights w. The following result will be used later in the preprocessing step of algorithms
for the MPS problem:

Lemma 1.4. 1.4[CG09, Theorem 14] Let G be a 2-connected graph and (C, w) be its non-planar
core. Then µ(G) = µ(C, w).

1.3 Overview

This thesis is structured as follows:

2. Chapter Exact Algorithms for the Minimum Genus Problem: We present the first ILP and
SAT formulations for the MGP. We investigate different ways to speed-up our algorithms
in practice:

• symmetry breaking constraints,

• specialized variables for low-degree vertices,

• binary face index representation,

16 Chapter 1. Introduction

• face skipping, and

• incremental formulations;

as well as polynomially sized formulations:

• index reformulation and

• betweenness reformulation.

Using the Rome and North graph instances we evaluate our approaches experimentally
based on state-of-the-art ILP and SAT solvers. After comparing our 48 variants to each
other on a small subset of all instances we compare our SAT formulation to the ILP
formulation by Stephan Beyer. Furthermore, we discuss the performance of our approach
against existing genus computations.

The developed algorithm works well on small to medium-sized graphs with small genus,
and compares favorably to other approaches.

In addition to the original publication [Bey+16], we cover the new face skipping and
incremental formulation speed-ups as well as the extension to the non-orientable case.

3. Chapter Limits of Greedy Approximation Algorithms for the Maximum Planar Subgraph
Problem: Based on our attempts to find a new approximation algorithm for the MPS
problem, we studied limits of greedy approximation algorithms in general.

We generalized many results that held only for specific algorithms to classes of greedy
algorithms that are natural extensions or variants of existing ones. Chapter 3 covers
algorithms inspired by famous planarity test algorithms, and generalizations of algorithms
building triangular structures.

Furthermore, we present much shorter proofs for the facts that maximal planar subgraph
yields a 1/3 approximation for MPS and for the NP-hardness of MPS itself.

In addition to our publication [CHW16] we discuss the application of graph decompositions
(cut- and path-width) to approximation algorithms. As we will see, we do not gain new
results in this area but hope to highlight insights induced by specialized decompositions
compared to the steamroller method of extended monadic second order logic for graphs
with bounded tree-width. Finally, we show an alternative proof for the approximation ratio
of the well known 7/18 approximation algorithm by Călinescu et al.

4. Chapter Exact Algorithms for the Maximum Planar Subgraph Problem: Besides the K5-
and K3,3-subdivision criterion by Kuratowski there is a variety of planarity criteria. We
give a non-complete list of 14 criteria where we picked four to build exact algorithms on
them for the MPS problem:

• Additional Minors: If we delete an edge from every Kuratowski subdivision while
taking care of deleting as little as possible edges we obtain an MPS. The same
principle can be used for graphs that are not apex (there is no edge such that its
deletion results in a planar graph) where we have to delete at least two edges for
every found subgraph. We obtain additional constraints that could strengthen the
Kuratowski-based formulation.

• Total Orders: A graph is planar if and only if there are three total orders <i on its
vertices such that their intersection is empty and for each edge xy and each vertex
z /∈ {x, y} there is an order such that x <i z and y <i z. This criterion is related to
Schnyder-Layout and admits straightforward ILP and PBS formulations.

Chapter 1. Introduction 17

• Theta Graphs: If there are three node-disjoint paths between a pair of claws in a
graph the embedding of one claw induces the embedding of the other. The two claws
together with the three paths form a theta graph. A graph is planar if and only if
the embeddings of all claws does not contain a contradiction: Enforcing two different
embeddings of one claw that if both realized result in a non-planar embedding.

• Facial Walks: A maximum planar subgraph corresponds to a maximum subgraph of
genus zero. We use the insights gained in Chapter 2 on the MGP to develop exact
algorithms that simulate the face traversal procedure on subgraphs to find the MPS.
The formulations are more intricate than for the MGP as we are nor longer restricted
to biconnected graphs with minimum vertex degree three. We examine the same
speed-up and reformulation approaches as in Chapter 2 to optimize the performance
of our algorithms.

Unfortunately, we were not able to beat the formulation based on Kuratowski subdivisions.

1.4 Test Instances and Used Frameworks

In this section we give a short overview of the used instance sets for our experiments and their
characteristica.

Rome graphs. Based on 112 real life graphs from software companies, textbooks in software
engineering and from various theses, Di Battista et al. [Di +97] generated 11 582 test graphs as
variants of the real life instances. See [Di +97, Section 3.2] for details. We consider the 8 249
non-planar graphs from this instance set. The characteristica of the non-planar Rome graphs are
shown in figures 1.D and 1.E.

North graphs. Based on the collection of 5 114 directed graphs obtained with an online graph
drawing service by Stephen North, Di Battista et al. [Di +00] filtered the instance set to 1 277
instances. See [Di +00, Section 3.2] for details. We consider the 423 non-planar graphs. Their
characteristica are shown in figures 1.D and 1.E

SteinLib. From the SteinLib instance library by Koch et al. [KMV00] we use the non-planar
non-complete graphs in the classes

• B: Sparse graphs on 50–100 nodes.

• i080: Sparse graphs on 100 nodes.

• The single instances cc6-2u.stp (|V | = 64, |E| = 192), cc6-2p.stp (64, 192), cc3-4p.stp
(64, 288), cc3-4u.stp (64, 288), design432.stp (8, 20), hc6p.stp (64, 192), and hc6u.stp

(64, 192).

We ignore the weights and interpret the instances as undirected graphs.

Expander graphs. We use the generator [SW99] for regular graphs (implemented together with
Tilo Wiedera as part of the OGDF) to create a set of instances that “seem to be the hardest
instances” for MPS heuristics[CKW16]; they are expander graphs with high probability [Kow11,
Section 3.5]. Expander graphs have the properties that they are fairly sparse albeit highly
connected.

We generated 20 graphs for each configuration:

18 Chapter 1. Introduction

nodes degree of each node

10 4, 6
20 4, 6, 10
30 4, 6, 10, 20
50 4, 6, 10, 20, 40

100 4, 6, 10, 20, 40
1 000 4, 6, 10, 20, 40

10 000 4, 6, 10, 20, 40

We complete this section with an overview of the used software and frameworks.

OGDF. All our implementations are based on the Open Graph Drawing Framework (OGDF)
[Chi+13], a self-contained C++ class library for the automatic layout of diagrams.

SCIP. The cutting plane methods in Chapter 4 are implemented as plug-ins for SCIP (Solving
Constraint Integer Programs) [Mah+17].

Gurobi. We use Gurobi as LP solver in Chapter 4 [Gur16]. It is invoked by SCIP.

CPLEX. We use CPLEX as ILP-solver in Chapter 2.

Lingeling. The SAT formulations in Chapter 2 are solved by lingeling [Bie14].

Clasp. The PBS formulations in Chapter 4 are solved by Clasp [Geb+11].

Chapter 1. Introduction 19

20 40 60 80 100
100

101

102

103

(a) Rome: instances per nodes

#
in
st
a
n
ce
s

20 40 60 80 100
100

101

102

103

(b) North: instances per nodes

#
in
st
an

ce
s

50 100 150 200
100

101

102

103

(c) Rome: instances per edges

#
in
st
an

ce
s

50 100 150 200
100

101

102

103

(d) North: instances per edges

#
in
st
an

ce
s

0 20 40 60
100

101

102

103

(e) Rome: instances per NPC nodes

#
in
st
an

ce
s

0 20 40 60
100

101

102

103

(f) North: instances per NPC nodes

#
in
st
an

ce
s

0 50 100 150 200
100

101

102

103

(g) Rome: instances per NPC edges

#
in
st
a
n
ce
s

0 50 100 150 200
100

101

102

103

(h) North: instances per NPC edges

#
in
st
a
n
ce
s

Figur 1.De 1.D: Characteristica instances per given number of nodes (grouped by |V | ∈ {5k, 5k+ 1, . . . , 5k+
4}), instances per given number of edges (grouped by |E| ∈ {5k, 5k + 1, . . . , 5k + 4}), instances per given
number of nodes of the NPC (grouped by |VNPC| ∈ {5k, 5k + 1, . . . , 5k + 4}) and instances per given
number of edges of the NPC (grouped by |ENPC| ∈ {5k, 5k+ 1, . . . , 5k+ 4}) for all non-planar Rome (left)
and North (right) graphs.

20 Chapter 1. Introduction

10 20 30 40
100

101

102

103

(a) Rome: instances per density

#
in
st
a
n
ce
s

10 20 30 40
100

101

102

103

(b) North: instances per density

#
in
st
an

ce
s

2 3 4 5
100

101

102

103

(c) Rome: instances per NPC density

#
in
st
an

ce
s

2 3 4 5
100

101

102

103

(d) North: instances per NPC density

#
in
st
a
n
ce
s

10 20 30 40 50 60
0

20

40

60

(e) Rome: NPC max. degr. per nodes

m
ax

im
u
m

n
o
d
e
d
eg
re
e

10 20 30 40 50 60
0

20

40

60

(f) North: NPC max. degr. per nodes

m
ax

im
u
m

n
o
d
e
d
eg
re
e

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

(g) Rome: % dv = 3 nodes in NPC

#
in
st
an

ce
s

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

(h) North: % dv = 3 nodes in NPC

#
in
st
an

ce
s

Figur1.E e 1.E: Characteristica instances per given density dG := |E|/|V | (grouped by dG ∈ [0.1·k, 0.1·(k+1)[),
instances per given NPC density dN := |ENPC|/|VNPC| (grouped by dN ∈ [0.1 · k, 0.1 · (k + 1)[), maximum
node degree per given number of nodes of the NPC (grouped by |VNPC| ∈ {2k, 2k + 1}) and percentage
of degree-three nodes per given number of nodes of the NPC (grouped by |VNPC| ∈ {2k, 2k + 1}) for all
non-planar Rome (left) and North (right) graphs.

Chapter 2. Exact Algorithms for the Minimum Genus Problem 21

Chapter 2

Exact Algorithms for the Minimum Genus
Problem

In this chapter we consider the Minimum Genus Problem (MGP) of a graph, see Section 1.2 for
the definition. To the best of our knowledge, there are no known formulations for this problem.
We propose the first ILP and SAT formulations for this problem. These formulations allow us
to develop the first working implementations of general algorithms for the problem, other than
exhaustive search.

We investigate several different ways to speed-up and strengthen the formulations; our
experimental evaluation on the well-established North and Rome graph instances shows that
our approach performs well on small to medium-sized graphs with small genus, and compares
favorably to other approaches.

Parts of this chapter were published in [Bey+16] and presented by Michal Kotrbč́ık at the
15th International Symposium on Experimental Algorithms (2016) in St. Petersburg.

The chapter is structured as follows: First, the basic ideas behind all formulations are
presented. Then, an exponentially sized formulation is given followed by polynomially sized
variants. After that we focus on five speed-up techniques that are tested and evaluated within a
computation framework. Finally, we consider the MGP on non-orientable surfaces and remaining
open tasks and problems.

This chapter focuses on the various SAT variants, which correspond to the division of work
in the joint project with my co-authors. Most of the ideas can also be applied in our ILP
formulations. To underline this, some examples of the according ILP formulations are given.

In addition to the original publication, this chapter includes the face skipping and incremental
formulation speed-ups, the comprehensive comparison of all SAT variants (where we used a
greedy approach to find good parameters for the initial publication) and the extension to the
non-orientable case.

2.1 Introduction

As one of the most important measures of non-planarity, the minimum genus of a graph is of
significant interest in computer science and mathematics. However, the problem is notoriously
difficult from the theoretical, practical, and also structural perspective. Indeed, its complexity
was listed as one of the 12 most important open problems in the first edition of Garey and
Johnson’s book [GJ79]; Thomassen established its NP-completeness in general [Tho89] and for
cubic graphs [Tho97]. Although the existence of an O(1)-approximation can currently not be
ruled out, there was no general positive result beyond a trivial O(|V |/g)-approximation until a
recent breakthrough by Chekuri and Sidiropoulos [CS13]. For graphs with bounded degree, they

22 Chapter 2. Exact Algorithms for the Minimum Genus Problem

provide an algorithm that either correctly decides that the genus of the graph G is greater than
g, or embeds G in a surface of genus at most gO(1) · (log |V |)O(1). Very recently, Kawarabayashi
and Sidiropoulos [KS15] showed that the bounded degree assumption can be omitted for the
related problem of Euler genus by providing an O(g256(log |V |)189)-approximation; however, this
does not yield an approximation for orientable genus.

Minimum genus is a useful parameter in algorithm design, since, similarly to the planar case,
we can take advantage of the topological structure to design faster algorithms for graphs of
bounded genus. However, these algorithms typically assume that the input graph is actually
embedded in some surface, as for instance in [EFN12; CCE13]. Therefore, without a practical
algorithm providing an embedding in a low-genus surface, these algorithms cannot be effectively
implemented.

Figur2.A e 2.A: The graph K3�K3�K3

(= Cayley graph of Z3
3).

In the mathematical community, the genus of specific
graph families is of interest ever since Ringel’s celebrated
determination of the genus of complete graphs [Rin74]. Such
research often combines numerous different approaches, in-
cluding computer-aided methods, see, e.g., [CG15; KP15].
However, in practice it often turns out that even determining
the genus of a single relatively small graph can be rather
difficult [Moh+85; BS88; MPW05; CG15; KP15]. One of
the reasons is the large problem space—an r-regular graph
with n vertices can have [(r − 1)!]n embeddings. A concrete
example is the graph K3�K3�K3 (see Figure 2.A), which
has genus 7 and was investigated in [Moh+85; BS88]. It is
6-regular, has 27 vertices, and thus has roughly 1056 different
embeddings. It is known that complete graphs have expo-
nentially many embeddings of minimum genus; however, the
known constructions are nearly symmetric and the problem becomes much more difficult when
the minimum genus does not equal the trivial bound from Euler’s formula, see, e.g., [KP15] for
more details. While it is conjectured that the genus distribution of a graph—the number of its
embeddings into each orientable surface—is unimodal (first nondecreasing and then from some
point on nonincreasing), very little is known about the structure of the problem space both in
theory and practice.

From a slightly different perspective, it has been known for a long time that deciding
embeddability in a fixed surface is polynomial both for the toroidal [Fil78] and the general
case [FMR79; DR91]. In fact, the minimum genus is fixed-parameter tractable as a result of
the Robertson-Seymour theorem, since for every surface there are only finitely many forbidden
graph minors, and testing for a fixed minor needs only polynomial time [KKR12]. While there
is a direct linear-time algorithm deciding embeddability in a fixed surface [Moh96; KMR08],
taking any of these algorithms to practice is very challenging for several reasons. First, the
naive approach of explicitly testing for each forbidden minor is not viable, since the complete list
of forbidden minors is known only for the plane and the projective plane, and the number of
minors grows rapidly: for the torus there are already more than 16 629 forbidden minors [Cha02].
Second, Myrvold and Kocay [MK11] reviewed existing algorithms to evaluate their suitability for
implementation in order to compute the complete list of forbidden toroidal minors. Unfortunately,
they report that [Fil78] contains a “fatal flaw”, that also appears in the algorithm in [FMR79],
and that the algorithm in [DR91] is also “incorrect”. Myrvold and Kocay conclude that “There
appears to be no way to fix these problems without creating algorithms which take exponential
time” [MK11]. Finally, Mohar’s algorithm [Moh96], even in the simpler toroidal case [JMM95],
is very difficult to implement correctly (see the discussion in [MK11]). Consequently, there is

Chapter 2. Exact Algorithms for the Minimum Genus Problem 23

currently no correct implementation of any algorithm for the general case of the problem beyond
exhaustive search.

It is thus desirable to have an effective and correct implementation of a practical algorithm
for the minimum genus. Rather surprisingly, to the best of our knowledge, the approach to
obtain practical algorithms via ILP (integer linear program) and SAT (satisfiability) solvers has
never been attempted for the minimum genus so far.

2.2 Basic Ideas for SAT and ILP Formulations

Our main idea to solve the MGP is based on the insight by Youngs [You63] that one can iterate
over all possible rotation systems of a graph, compute the resulting number of faces and thus
compute the minimum genus by maximizing the number of faces. However, the number of
rotation systems of a given graph G is

∏
v∈V (dv − 1)! which is exponential in the input size of

G. Therefore, our concept differs from the one by Youngs in an essential point: we construct a
minimum genus rotation system using ILPs or SATs instead of iterating over all rotation systems.

We consider finite undirected graphs and assume w.l.o.g. that all graphs are simple, connected,
and have minimum degree 3 (see Corollary 2.2).

To realize our approach, we model the so called face traversal procedure. See Section 1.1.3 for
a description of the procedure and the basic definitions of embeddings, surfaces and faces. We
will use facial walks on non-orientable surfaces later in this chapter. For the orientable case we
restrict the general definition to λ ≡ 1.

Up to mirror images of the surfaces, there is a 1-to-1 correspondence between rotation systems
of G and (cellular) embeddings of G into orientable surfaces (see [GT87, Theorem 3.2.3] and
[Edm60; Hef91]). Euler’s formula asserts that each (cellular) embedding of G in an orientable
surface satisfies |V | − |E|+ f = 2− 2g, where f is the number of the faces of the embedding,
and g is the genus of the underlying surface. It follows that (i) determining the genus of the
underlying surface for a given rotation system is essentially equivalent to calculating the number
of faces; and (ii) finding the genus of a graph corresponds to maximizing the number of faces
over all rotation systems of the graph. See [MT01] for more details.

Our ILP approaches will maximize the number of faces over the possible rotation systems. In
order to construct the ILP we use an upper bound f̄ for the number of faces of a given graph. On
the other hand, we will use our SAT formulations to solve the question “is there an embedding
with at least f faces?”

Lemma 2.1. 2.1Let G = (V,E) be a connected, non-planar graph and f+ := min{b2|E|/3c, |E| −
|V |}. The number f̄ = f+ −

[
f+ · (|E| − |V |) mod 2

]
is an upper bound for the number of faces

of G in an orientable embedding.

Proof. Using the Euler characteristic 2 − 2g = χ = |V | − |E| + |F |, we conclude that |F | =
2− 2g + |E| − |V | ≤ |E| − |V |, so |E| − |V | is a valid upper bound. Furthermore, imagine that
there are more than 2|E|/3 faces. Obviously, we then have used more than 3(2|E|/3) = |A| darts
in the facial walks, a contradiction due to λ ≡ 1.

Using χ again, it follows that |V | − |E|+ |F | ≡ 0 mod 2, so |F | ≡ |V | − |E| mod 2. Thus, if
|V | − |E| ≡ 0 mod 2 and f+ ≡ 1 mod 2 the upper bound f+ can be improved by 1, and vice
versa. �

The formulations we present in the next sections always answer the question: “is there an
embedding of the given graph with at least f faces?” where f is a parameter. In our formulations
we use variables xi to model whether a face with the index i is used. We use them as follows:

• In our SAT approach we use only x1, . . . , xf in the model and set all of them to true.

24 Chapter 2. Exact Algorithms for the Minimum Genus Problem

Face
Variables

Containment
Variables

Rotation Sys.
Variables

Arc Containment in
Faces Constr.

Simulated Facial
Walks Constr.

Rotation System
Constr.

FV CV RV

CC WC RC

Figur2.B e 2.B: Interplay of the six blocks of all formulations. A formulation is defined by three variable
blocks FV ,CV ,RV and three constraint blocks CC ,WC ,RC .

• In our ILP approach we use Use x1, . . . , xf̄ in the model and

max
∑f̄

i=1
xi

as objective function.

2.3 Exponentially Sized Formulations: Basic ILP and SAT Models

In this section, we describe how to reformulate the MGP as an integer linear program (ILP) or
a related problem of Boolean satisfiability (SAT). We first describe the basic concepts of both
formulations, and later consider possible ways to improve them.

All of our formulations consist of (a subset of) the following six building blocks, where each
block can be designed/parameterized in several ways (which will be discussed later):

FV face variables, e.g., xi determines if the face with index i is used;

CV containment variables, e.g., cia determines if dart a is contained in the face with index i;

RV rotation variables, encode the rotation at a vertex;

CC containment constraints, various constraints that e.g., ensure that darts are contained in
only one face, Kirchhoff constraints, and further speed-up methods;

WC facial walks constraints, simulate the face traversal procedure;

RC rotation system constraints, ensure that the RV form a feasible rotation system.

The interplay of the six blocks is shown in Figure 2.B. We will write IC, IW , IR and BC, BW , BR
for CC , WC , RC when want to distinguish between the ILP and SAT formulation, respectively.

First ILP Model. Let f̄ be an upper bound on the attainable number of faces. For each i ∈ [f̄],
we have a binary variable xi that is 1 if and only if the i-th face exists and a binary variable cia,
for each a ∈ A, that is 1 if and only if dart a is traversed by the i-th face. For each vertex v ∈ V
and neighbors u,w ∈ N(v), u 6= w, the binary variable pvu,w is 1 if and only if w is the direct

Chapter 2. Exact Algorithms for the Minimum Genus Problem 25

successor of u in the rotation at v. Our first ILP formulation II then is:

max
∑f̄

i=1
xi

s. t. 3xi ≤
∑

a∈A
cia ∀i ∈ [f̄] (ICI

1)∑f̄

i=1
cia = 1 ∀a ∈ A (ICI

2)∑
a∈δ−(v)

cia =
∑

a∈δ+(v)
cia ∀i ∈ [f̄], v ∈ V (ICI

3)

civw ≥ ciuv + pvu,w − 1 ∀i ∈ [f̄], v ∈ V , u 6= w ∈ N(v) (IW I
1)

ciuv ≥ civw + pvu,w − 1 ∀i ∈ [f̄], v ∈ V , u 6= w ∈ N(v) (IW I
2)∑

w∈N(v),u6=w
pvu,w = 1 ∀v ∈ V , u ∈ N(v) (IRI

1)∑
u∈N(v),w 6=u

pvu,w = 1 ∀v ∈ V , w ∈ N(v) (IRI
2)∑

u∈U

∑
w∈N(v)\U

pvu,w ≥ 1 ∀v ∈ V , ∅ 6= U (N(v) (IRI
3)

xi, c
i
a, p

v
u,w ∈ {0, 1} ∀i ∈ [f̄], a ∈ A, v ∈ V , u 6= w ∈ N(v)

Theorem. Formulation II solves MGP.

Proof. Constraints (ICI
1) ensure that if a face exists, it traverses at least three darts1; inversely,

each dart is traversed by exactly one face due to (ICI
2). Equalities (ICI

3) guarantee that at every
vertex of a face i, the number of i-traversed incoming and outgoing darts is identical. Inequalities
(IW I

1) and (IW I
2) ensure that darts uv and vw are both in the same face if w is the successor of

u in the rotation at v. Constraints (IRI
1) and (IRI

2) ensure that pv represents a permutation of
the vertices in N(v); (IRI

3) ensures that pv consists of a single cycle. Observe that maximizing
the objective function guarantees that each face index corresponds to at most one facial walk.�

Remark. Note that constraints (IRI
3) are sub-tour elimination constraints typically found in

models for the Travelling Salesman Problem. In our context the elimination of sub-tours means
that there is no sub-cycle in the rotation around a vertex. Thus, the rotation around each vertex
consists of a single cycle of its neighbors.

Furthermore, the formulation has a polynomial number of variables and the number of
constraints is exponential in ∆(G). y

First SAT Model. To solve the above ILP, we will need to consider its linear relaxation (where
the binary variables are replaced by variables in the interval [0, 1]). It is easy to see that fractional
values for the pv matrices lead to very weak dual bounds.2 Therefore, we also consider SAT
formulations. While general SAT solvers cannot take advantage of algebraically obtained (lower)
bounds, state-of-the-art SAT solvers are highly tuned to quickly search a vast solution space by
sophisticated branching, backtracking, and learning strategies. This can give them an upper
hand over ILP approaches, in particular when the ILP’s relaxation is weak.

In contrast to the ILP, a SAT problem has no objective function and simply asks for some
satisfying variable assignment. In our case, we construct a SAT instance to answer the question
whether the given graph allows an embedding with at least f faces. To solve the optimization
problem, we iterate the process for increasing values of f until reaching unsatisfiability.

1For a simple graph, the minimum genus embedding contains no face of length 1 or 2. On the other hand, we
cannot be more specific than the lower bound of 3.

2The values pvu,w := 1/(dv − 1) satisfy the RC in II. Furthermore setting cia := 1/f̄ satisfies the WC and allows

to set all xi to 1. Hence, the CC are satisfied, too. Thus, we have
∑f̄

i=1 xi = f̄ as value of the objective function.

26 Chapter 2. Exact Algorithms for the Minimum Genus Problem

II & BI ILP one SAT iteration all SAT iterations

FV f̄ 0 0

CV f̄ |E| f |E| f̄ |E|
RV ∆(G)2|V | ∆(G)2|V | ∆(G)2|V |
CC f̄ |V |+ |E| f2|E| f̄3|E|
WC ∆(G)2|V |f̄ ∆(G)2|V |f ∆(G)2|V |f̄2

RC 2∆(G)|V | 2∆(G)|V | 2∆(G)|V |f̄

Tabl2.C e 2.C: Number of variables and constraints for the initial formulations II and BI. We only give
bounds in terms of O-notation.

Remark. In Chapter 4 we use PBS (pseudo-Boolean satisfiability) formulations to model SAT
problems with objective functions. Our method of using the following SAT formulations—to
find the maximum feasible number f of faces—simulates a PBS solver. In the next sections,
we present speed-up methods to equip our models with structures that can benefit from our
knowledge, e.g. about the parity described in the lemma above. Therefore, we refrain from using
PBS formulations here. y

We use the same notation as before, and construct the SAT formulation around the very
same ideas. Each binary variable is now a Boolean variable instead. While a SAT formulation is
typically given in conjunctive normal form (CNF), we present it here as a conjunction of separate
Boolean formulae (rules) for better readability. Their transformation into equisatisfiable CNFs is
trivial in our usecases. The initial SAT formulation BI is:

¬(cia ∧ cja) ∀a ∈ A, i 6= j ∈ [f] (BCI
1)∨

a∈A
cia ∀i ∈ [f] (BCI

2)

pvu,w → (ciuv ↔ civw) ∀v ∈ V , u 6= w ∈ N(v), i ∈ [f] (BW I
1)∨

u∈N(v),u6=w
pvu,w ∀v ∈ V , w ∈ N(v) (BRI

1)

¬(pvu,w ∧ pvu′,w) ∀v ∈ V , w ∈ N(v), u 6= u′ ∈ N(v) \ {w} (BRI
2)∨

w∈N(v),w 6=u
pvu,w ∀v ∈ V , u ∈ N(v) (BRI

3)

¬(pvu,w ∧ pvu,w′) ∀v ∈ V , u ∈ N(v), w 6= w′ ∈ N(v) \ {u} (BRI
4)∨

u∈U,w∈N(v)\U
pvu,w ∀v ∈ V , ∅ 6= U (N(v) (BRI

5)

Theorem. The SAT formulation above solves MGP with respect to f .

Proof. Rules (BCI
1) and (BCI

2) enforce that each dart is traversed by exactly one face and each
face contains at least one dart, cf. (ICI

2). Rule (BW I
1) ensures that the successor is in the same

face, cf. (IW I
1)–(IW I

2). Rules (BRI
1)–(BRI

5) guarantee that pv variables form rotations at v,
cf. (IRI

1)–(IRI
3). �

Characteristica of the initial formulations are shown in Table 2.C. Both formulations have
the same number of variables (where we assume that in the worst-case f = f̄ for the final SAT
iteration). Clearly, solving many SAT iterations consecutively results in a larger number of
constraints compared to the ILP formulation.

Chapter 2. Exact Algorithms for the Minimum Genus Problem 27

The performance of our initial formulations is not good enough to build a practical minimum
genus computation tool on them. We use them as a basis of comparison for more sophisticated
formulations both for run-time benchmarks as well as correctness testing.

In the following sections we discuss reformulations to gain speed-ups on the theoretical
side and in practice. We will see polynomially sized formulations that are slower in practice,
tighter constraints that do not result in faster algorithms, and vast speed-ups by changing the
representation of objects or by simplifications based on special graph structures.

2.4 Polynomially Sized Formulations: Index and Betweenness Reformulation

Remember that the number of inequalities (IRI
3), or rules (BRI

5) respectively, is exponential in
the degree of each vertex v. Therefore, we investigate ways to obtain a polynomial time solution
strategy or a polynomially sized formulation.

Polynomial Time Solution Strategy. For the ILP, we can separate violating constraints (also
known as row generation) using a well-known separation oracle based on minimum cuts (see,
e.g., [Coo+98, Sec. 7.4]). While this guarantees that only a polynomially sized subset of (IRI

3) is
used, it is not worthwhile in practice: First, the maximum degree is typically small; second, the
separation process requires a comparably large overhead and third, state-of-the-art ILP solvers
offer a lot of speed-up techniques that need to be deactivated to separate constraints on the fly.
Overall, this more than doubles the running times compared to a direct inclusion of all (IRI

3),
even if we separate only for vertices with large degrees.

Another option is to use different representations for rotation systems. Here we discuss an
index approach and a betweenness approach. Both yield polynomially sized formulations.

Index Reformulation. For the index approach we replace the permutation variables with variables
that attach vertices to specific positions in the rotation. This is known to be weaker in the
realm of ILPs, and we hence concentrate on the SAT formulation. There, we introduce for
any v ∈ V, u ∈ N(v) a Boolean variable qvj,u that is true if and only if u is the j-th vertex
in the rotation at v. We do not use the p variables any longer, replace the old permutation
rules (BRI

1)–(BRI
5) with rules to ensure that each qv is a bijective mapping:∨

j∈[dv]
qvj,u ∀v ∈ V , u ∈ N(v) (BRInd

1)

¬(qvj,u ∧ qvk,u) ∀v ∈ V , u ∈ N(v), j 6= k ∈ [dv] (BRInd
2)

¬(qvj,u ∧ qvj,w) ∀v ∈ V , j ∈ [dv], u 6= w ∈ N(v) (BRInd
3)

and change (BW I
1) to∨

j∈[dv]
(qvj,u ∧ qvj+1,w) → (ciuv ↔ civw) ∀v ∈ V , u 6= w ∈ N(v), i ∈ [f]. (BW Ind

1)

The effect of the reformulation will be studied in detail in Section 2.7. In short, the number of
solved instances falls and the run-time simultaneously increases.

Betweenness Reformulation. For the betweenness approach we add the variables rvx,y,z for each
triple of pairwise distinct x, y, z ∈ N(v). By rvx,y,z = 1 (true, respectively) we denote that y is
(somewhere) between x and z in the counter-clockwise rotation at v. Here we only describe the

28 Chapter 2. Exact Algorithms for the Minimum Genus Problem

BI BInd BBet

RV ∆(G)2|V | ∆(G)2|V |+ |E| ∆(G)3|V |
WC ∆(G)2|V |f ∆(G)2|V |f ∆(G)2|V |f
RC 2∆(G)|V | ∆(G)3|V | ∆(G)4|V |

Tabl2.D e 2.D: Number of variables and constraints of the ordering reformulations compared to the initial
formulation. We only give bounds in terms of O-notation.

v

x
y

z v

x
y

z v

x
y

zrotation
pvx,y = 1
pvy,z = 1

index
qvj−1,x = 1
qvj,y = 1
qvj+1,z = 1

betweenness
rvx,y,z = 1

Figur2.E e 2.E: Example variable assignment for the three different representation of the rotation around
vertex v. The shown neighbors appear as · · · → x→ y → z → · · · in the cyclic order. Note that we would
have rvx,y,z = 1 even if the neighbors appear as · · · → x→ u→ y → z → · · · in the cyclic order.

usage of the r variables in the SAT formulation. The usage in the ILP is analogous. First of all,
the cyclicity of a rotation implies the symmetries

rvx,y,z ≡ rvy,z,x ≡ rvz,x,y ≡ ¬rvx,z,y ≡ ¬rvz,y,x ≡ ¬rvy,x,z ∀{x, y, z} ⊆ N(v). (BRBet
1)

Note that from an implementation point of view, it is possible to merge the different variables
rvx,y,z, r

v
y,z,x, rvz,x,y, r

v
x,z,y, r

v
z,y,x, rvy,x,z into a single variable rv{x,y,z} by using Equations (BRBet

1)
directly in the other constraints.

Instead of ensuring that each pv represents a permutation, we connect the p-variables to the
new r-variables via

pvu,w ↔
∧

y∈N(v)\{u,w}
rvu,w,y ∀v ∈ V , u 6= w ∈ N(v) (BRBet

2)

Note that we keep the constraints (BRI
1)–(BRI

5) and replace only RC . The rules to model the
betweenness conditions for the neighborhood of a given vertex v are simply

rvu,w,x ∧ rvu,x,y → rvu,w,y ∧ rvw,x,y ∀{u,w, x, y} ⊆ N(v) (BRBet
3)

The effect of the reformulation will be studied in detail in Section 2.7. Essentially, the results are
similar to the index reformulation above.

Summary and Conclusion. The three different approaches to model the rotation around each
vertex are summarized in Figure 2.E. Table 2.D shows the number of required variables and
constraints.

By using the rotation variables pv we have a direct representation of successor and predecessor.
This way it is easy to cast the facial walk algorithms into constraints. However, we need O(2|V |)
cut constraints to ensure that the rotation around each vertex consists of exactly one cycle. On
a small test instance with 405 random samples from the Rome graph library the initial SAT
formulation solved 108 instances in an average time of 27 seconds on the successful instances.

The index based approach is not as easy to handle. Each time we have to check if there is an
index j ∈ [dv] such that the pair (j, j + 1) represents the current successor or predecessor that

Chapter 2. Exact Algorithms for the Minimum Genus Problem 29

we are looking for. The number of RC constraints drops to O(|V |4). However, on our small test
set we solved only 102 instances; the common set solved both by BI and BInd has 100 instances.
The run-time on the common set increased to 97.5 seconds in the average case.

Finally, we look at the betweenness formulation. The number of RC constraints has dropped
to O(|V |5) compared to the initial formulation. As in the index-based reformulation, we need
auxiliary constraints (BRBet

2) to connect the betweenness relation to the successor/predecessor
relation that we use in the other constraints. On the small test set we solved only 104 instances;
the common set solved both by BI and BBet has slightly different but again 100 instances. The
run-time on the common set increased to 97.6 seconds in the average case.

A direct comparison between BInd and BBet shows that the commonly solved set has a size of
99 instances and the average run-time on this set does not differ significantly.

Overall, we conclude that the exponential dependencies of the original formulations are not so
much of an issue in practice after all, and the overhead and weaknesses of polynomial strategies
typically do not seem worthwhile. However, if one considers problems with many very high
degree vertices where the exponential dependency becomes an issue, the above approaches can
be merged very naturally, leading to an overall polynomially sized model: Let ϑ be some fixed
constant threshold value (to be decided upon experimentally). For vertices v of degree at most ϑ,
we use the original formulation requiring an exponential (in constant ϑ) number of constraints
over pv. Vertices of degree above ϑ are handled via the betweenness reformulation.

In our experiments (see Section 2.7) we see that only ten instances (2 %) of the North graph
library have a degree distribution that prohibits the use of our exponentially sized formulations.

2.5 Speed-Up Techniques

The methods presented in the previous section yield polynomially sized formulations. But
they result in an increased run-time and a decreased success rate. There are several potential
opportunities to improve upon the initial formulation. In pilot studies we investigated their
practical ramifications.

Symmetries. In our initial formulation II we have some symmetries that needlessly increase the
search space for feasible solutions, and thus also the branch-and-cut search tree. Here we discuss
two examples.

1. Objective function: When the upper bound is f̄ = 10 and the optimal solution has, say,
f = 8 faces, there are

(
10
8

)
= 45 possibilities to fill 8 spots in the objective function

x0 + · · ·+ x9 with 1’s. The symmetry-breaking constraints

xi ≥ xi−1, i = 0, . . . , f̄ − 2

prohibit this behavior.

2. Face sizes: Let |fi| denote the size (number of darts) of face fi. We can restrict the search
space to feasible instances with |f0| ≥ |f1| ≥ . . . ≥ |ff̄−1|. This can be done by∑

a∈A
cia ≥

∑
a∈A

ci+1
a , i = 0, . . . , f̄ − 2.

Surprisingly, this does not improve the overall ILP running time (and the latter is even worse by
orders of magnitude), and we refrain from using these constraints in the following.

30 Chapter 2. Exact Algorithms for the Minimum Genus Problem

II & ID3 BI & BD3

RV |V3|+ ∆(G)2|V \ V3| |V3|+ ∆(G)2|V \ V3|
WC (|V3|+ ∆(G)2|V \ V3|)f̄ (|V3|+ ∆(G)2|V \ V3|)f

Tabl2.F e 2.F: Number of variables and constraints of the low-degree vertices reformulations compared to
the initial formulation. We only give bounds in terms of O-notation.

Low-Degree Vertices. Consider a vertex v of degree two and its neighbors N(v) = {u0, u1}.
There is only one possibility for the rotation around v: u0 → u1 → u0. Thus, we do not need
variables for the rotation system of such vertices. However, we do not even consider such vertices,
since we can restrict ourselves to minimum vertex degree three (cf. Corollary 2.2).

But a similar observation holds for degree-three vertices. Let V3 := {v ∈ V : dv = 3}.
Consider a degree-three vertex v ∈ V3 with neighbors u0, u1, u2. The only two possible rotations
at v are u0 → u1 → u2 → u0 and u2 → u1 → u0 → u2. Hence, we can use a single binary/Boolean
variable pv whose assignment represents this choice.

In the ILP, we remove all pvu,w variables for v ∈ V3, delete the according IRI constraints, and

replace IW I (on V3) by

civuk+1
≥ ciukv + pv − 1 ∀i ∈ [f̄], v ∈ V3, k ∈ [3] (IWD3

1)

ciukv ≥ civuk+1
+ pv − 1 ∀i ∈ [f̄], v ∈ V3, k ∈ [3] (IWD3

2)

civuk ≥ ciuk+1v
− pv ∀i ∈ [f̄], v ∈ V3, k ∈ [3] (IWD3

3)

ciuk+1v
≥ civuk − p

v ∀i ∈ [f̄], v ∈ V3, k ∈ [3], (IWD3
4)

where u0, u1, u2 denote the arbitrarily but statically ordered neighbors of v ∈ V3. Remember
that in [3] we have 2 + 1 = 0, so the “k ∈ [3]” covers all cases.

In the SAT formulation, we analogously replace (BW I
1) on V3 by

pv → (ciukv ↔ civuk+1
) ∀v ∈ V3, k ∈ [3], i ∈ [f] (BWD3

1)

¬pv → (ciuk+1v
↔ civuk) ∀v ∈ V3, k ∈ [3], i ∈ [f]. (BWD3

2)

The number of constraints is nearly the same as in the initial formulation, but the number of
variables is decreased by 5|V3|. Details can be found in Table 2.F.

As expected, this is faster by orders of magnitude for certain families of graphs, especially
for instances with many degree-three vertices. On the real world Rome benchmark set (see
Section 2.7), the performance improves by about 10 % for both the ILP and the SAT formulations,
compared to their respective formulations with purely pvu,w variables. As we will see in Section 2.7,
the impact of this speed-up method depends on the choice of the other speed-up methods. There
are combinations where using the special V3-variables improves the performance but also cases
where the performance drops.

This idea can be generalized for vertices v of arbitrary fixed degree dv ≥ 4. There are
% := (dv − 1)! different rotations. Instead of using O(d2

v) many variables pvu,w, we introduce
dlog2 %e binary variables and represent the index of the rotation as a binary number. Since this
process is coupled with a substantial trade-off of more complicated and weaker constraints, we
refrain from using it for dv ≥ 4.

Binary Face Representations. A big disadvantage of the initial formulation is that we need a
large number of constraints to ensure that each dart is only contained in one face. In the ILP

Chapter 2. Exact Algorithms for the Minimum Genus Problem 31

Figur 2.Ge 2.G: Graph of the variables and constraints of BI for the input graph K5. The vertices on the
left side are the CV variables cia. The vertices on the right side are the RV variables pvu,w. An edge
represents that two variables appear together in one constraint. It is obvious that we have (too) many
edges connecting vertices on the left side. The binary face representation attacks this problem.

variant II this is quite easy: ∑f̄

i=1
cia = 1 ∀a ∈ A, (ICI

1)

which are only 2|E| constraints. But in the SAT formulation BI we need

¬(cia ∧ cja) ∀a ∈ A, i 6= j ∈ [f], (BCI
1)

which are f(f − 1)|E| constraints.

Example. Consider the complete graph K5 on five vertices. In II we need 20 constraints of this
type. The graph has genus one, thus we use f = f̄ in our last iteration. This results in 200
constraints in BI. The example is illustrated in Figure 2.G. y

We attack this problem in the SAT formulation by using an alternative representation of the
face indices. Let i ∈ [f] be a face index, and B(i) the vector of its binary representation, i.e.,
i =

∑`
j=0 2j · B(i)j , where ` = dlog2 fe. We define new Boolean variables bja that are true if

and only if dart a is contained in a face i with B(i)j = 1. In logic formulae, value B(i)j = 1 is
naturally mapped to true, 0 to false.

By changing the clauses (BCI
2) and (BW I

1) of the initial SAT formulation above, we construct
a new formulation that asks for a solution with at least f faces, because we do not forbid the
usage of binary representations outside of [f].∨

a∈A

∧
j∈[`]

(bja ↔ B(i)j) ∀i ∈ [f] (BCBin
2)

pvu,w → (bjuv ↔ bjvw) ∀v ∈ V , u 6= w ∈ N(v), j ∈ [`] (BWBin
1)

32 Chapter 2. Exact Algorithms for the Minimum Genus Problem

BI BBin

CV |E|f |E| log f

CC f2|E| f

WC ∆(G)2|V |f ∆(G)2|V | log f

Tabl2.H e 2.H: Number of variables and constraints of the binary face representation reformulation compared
to the initial formulation. We only give bounds in terms of O-notation.

Note that we previously also constructed SAT instances that ask for a solution with at least
f faces, but this time we also allow faces with indices up to 2dlog2 f̄e. Assume that f̄ = 9, then
we allow face indices from 1 up to 2dlog2 9e = 24 = 16. But rule (BCBin

2) forces us to use at least
f faces. The final solution is nonetheless correct because we will have a no-instance when asking
for too many.

The number of variables and constraints is shown in Table 2.H.
The combination of this idea with the low-degree reformulation is straightforward. For v ∈ V3,

we replace (BWBin
1) by

pv → (bjukv ↔ bjvuk+1
) ∀v ∈ V3, k ∈ [3], j ∈ [`] (BWBin,D3

1)

¬pv → (bjuk+1v
↔ bjvuk) ∀v ∈ V3, k ∈ [3], j ∈ [`]. (BWBin,D3

2)

This variant achieves a more than 100-fold speedup for certain families of graphs. On our
test set we solved 150 instead of 108 instances in just 1.8 seconds instead of 33 seconds in the
average case (over the common set of 108 instances).

Face Skipping. We have two kinds of face indices we do not need to check for feasibility in the
SAT variants:

1. Skipping faces by parity: By Euler’s formula, we only have to calculate SAT instances with
f ≡ |E| − |V | mod 2. For increasing numbers of faces we compute the satisfiability until
we get the first unsatisfiable instance. Such an iteration is clearly not necessary in the
ILP approach, where our objective function explicitly maximizes f and we only require an
upper bound of f̄ adjusted for parity. See Lemma 2.1.

2. Skipping faces that are implicitly constructed by a SAT solution asking for an embedding
with fewer faces. We will use the following part of this paragraph to discuss this idea in
detail.

Consider an iteration where we ask for an embedding with at least f faces. If this is a yes-
instance, the SAT solver only knows that there is an embedding with at least f faces. However, it
is possible that the rotation system induced by the solution of this yes-instance has more than f
faces. This is the case when the SAT formulation labels disjoint (face) cycles in the input graph
with the same index. Algorithm 2.I shows an easy way to use this extraction of the realized faces.

An example is shown in Figure 2.J, where we compute the minimum genus of the K5 by
finding an embedding with 5 faces. Without face skipping we see that 1, 3, and 5 are yes-instances
and f = 7 would be a no-instance. Using f̄ = 5 we would not check the f = 7 instance. If the
result of the SAT solver asking for f = 1 face induces a rotation system with, say, 3 faces we also
would not check the f = 3 instance.

The impact of this method highly depends on the graph class. There are settings when using
the face skipping we solve 101 instead of 98 instances, coupled with a run-time increasement by

Chapter 2. Exact Algorithms for the Minimum Genus Problem 33

5 13

2

4

13

2

4

f1f1

f1 f1

f1

13

2

4

f1f2

f3 f1

f1

13

2

4

f1f2

f3 f4

f5

Figur 2.Je 2.J: The results of iterative SAT solver calls on the input graph K5. The complete graph on 5
vertices is given on the top left. Now assume that we ask the SAT formulation to check if there is an
embedding with at least one face. It is possible that the rotation system that we get from the corresponding
variable assignment is a rotation system such that the graph can be embedded on the torus without a
crossing.

Remember our SAT formulation, we only ask for at least one face. Thus, our model could result in an
optimal rotation system but the SAT formulation labels all 5 faces with the same label “f1”. The reason
is that we do not forbid disjoint cycles in a facial walk. The result is shown on the top right: The rotation
system is optimal (induces 5 faces) but the SAT solver is not aware of that fact.

In the next iteration we would ask for a solution with at least 3 faces (shown on the bottom left). Again,
the rotation system could induce a solution with 5 faces.

In the final iteration (bottom right) we get an optimal solution.
If we use face skipping, the process is a lot faster: We ask for a solution with at least one face. The SAT

constructs such a solution. We extract the rotation system from the variable assignment and compute
the facial walks by ourselves. This way we immediately see that we already have a solution with 5 faces,
which is the optimum in our example.

The faces in the optimal solution are:
f1: 1→ 5→ 2→ 1
f2: 2→ 5→ 3→ 2
f3: 3→ 5→ 4→ 3
f4: 4→ 5→ 1→ 4
f5: 1→ 2→ 4→ 1→ 3→ 4→ 2→ 3→ 1

34 Chapter 2. Exact Algorithms for the Minimum Genus Problem

Algorithm 2.I: Min2.I Genus(Graph G)

f := 1;
adjust f for parity;
while SAT instance for G to find an embedding with at least f faces is a yes-instance do

compute the number fres of realized faces with the facial walk algorithm;
adjust fres for parity;
f := fres + 2;

return fres

56 percent. In other SAT variants we solve 144 instead of 145 instances but we need only half as
long as before. Details follow later.

Incremental Formulations. State-of-the-art SAT solvers are able to perform warm starts, which
means that we can add further variables and constraints and check for satisfiability of the
extended formulation. The solver can use knowledge from the previous calls to solve the extended
formulation faster than by starting from scratch.

Our problem is ideally suited for this method: Consider the initial SAT formulation BI for a
fixed f . To check if the formulation for f + 1 is also a yes-instance, we need to add the variables
cf+1
a for a ∈ A and the constraints

¬(cia ∧ cf+1
a) ∀a ∈ A, i ∈ [f] (BCIncr:f+1

1)∨
a∈A

cf+1
a (BCIncr:f+1

2)

pvu,w → (cf+1
uv ↔ cf+1

vw) ∀v ∈ V , u 6= w ∈ N(v) (BW Incr:f+1
1)

Remember that we use the parity argument, so we simultaneously add the variables and constraints
above for f + 1 and f + 2.

As before, the impact highly depends on the graph class. There are settings when using the
incremental formulation we solve 147 instead of 135 instances, coupled with a run-time increase
by 9 percent. In other SAT variants we solve the same number of instances but we need only
half as long as before. Details follow later.

2.6 A Minimum Genus Computation Framework

Before employing any of our approaches on a given graph, we consider several preprocessing
steps. The whole computation can be described as follows:

(S1) Compute the biconnected components Bi of the input graph.

(S2) Compute the unweighted non-planar core Ci of each non-planar component Bi.

(S3) Use one of our approaches to compute the minimum genus γ(Ci) of each Ci.

(S4) The minimum genus of the input graph is then
∑

i γ(Ci).

Steps (S1) and (S4) is based on an old result by Battle et al. For each biconnected component
we compute the genus independently.

Lemma. [Bat+62, Theorem 1], [Arc86]3 The genus is additive over biconnected components.

3Archdeacon [Arc86] addresses a more general decomposition: A k-amalgamation is a graphG that is decomposed
into subgraphs Gi such that G1 ∪G2 = G and |V (G1) ∩ V (G2)| = k. We write G1 ∪k G2 = G. In this context the
result of Battle et al. [Bat+62] is γ(G1 ∪1 G2) = γ(G1) + γ(G2).

Chapter 2. Exact Algorithms for the Minimum Genus Problem 35

For step (S2) we need to prove that the non-planar core reduction is invariant for our problem.
The following theorem is an equivalent of Lemma 1.4 for the minimum genus instead of skewness:

Theorem. Let G be a 2-connected graph and C be its non-planar core. Then, γ(G) = γ(C).

Proof. γ(G) ≤ γ(C): Given an optimal solution for C, we can embed each maximal planar
2-component S onto the surface in place of its replacement edge, without any crossings.

γ(C) ≤ γ(G): Each replaced maximal planar 2-component S contains a path connecting its
poles that is drawn crossing-free in the optimal embedding of G; we can planarly draw all of
S along this path, and then simplify the embedding by replacing this locally drawn S by its
replacement edge; this gives a solution for C on the same surface. �

The result above allows us to restrict the computations to non-planar components. We can
test γ(Bi) = 0 by simply running a linear time planarity test, in our case [BM04]. The unweighted
non-planar core itself is also computed in linear time by simply replacing each maximal planar
2-components with an edge.

Corollary 2.2. 2.2Computations for the MGP can be restricted to simple biconnected graphs
with minimum degree at least 3. �

2.7 Experimental Evaluation: Different Formulations, Overall Practicality,
and Comparison to Existing Genus Computations

In the sections above we developed 48 different SAT variants in total, which arise by combining
the variants for each aspect. Our goal is to decide which variant is best to use in practice. This,
of course, highly depends on the considered graph class in a specific application.

In the next paragraph we compare all SAT variants against each other on a subset of the
Rome graph instances to find the best parameter choice for real world graphs. The selected
parameter setting will be used later in this section for all further experiments. We do not present
the according results for the ILP formulations as they are not in the focus of our work in this
context.4 The parameter setting selected for the ILP equals the setting for the SAT-based
minimum genus algorithm.

In the second part of our experiments we look at the overall practicality of our SAT- and
ILP-based algorithms. We examine the success rate (minimum genus computation finished within
a fixed amount of time, in our case 20 minutes) and run-time on all non-planar Rome and North
graphs. Additionally, we compare both approaches against each other.

Finally, we compare our new approaches to existing minimum genus computations.

SAT Variants. Now, we compare all 48 SAT variants from R×D × C × F × I, where

R := {rotation system : initial, index,between} =: {roR, roI, roB}
D := {dv = 3 : yes, no} =: {cuY, cuN}
C := {incremental : yes,no} =: {inY, inN}
F := {face skipping : yes,no} =: {skY, skN}
I := {face indices : B,N} =: {biY, biN}

against each other. We use a subset of the non-planar Rome instances. We took a random but
fixed sample of five instances per node size ∈ {20, 21, . . . , 100}, so we worked on 405 instances to
compare all variants. Working on all 8249 non-planar Rome instances would require too much
time. We discuss two natural questions:

4The development and experimental exploration of the ILP algorithms were done by Stephan Beyer.

36 Chapter 2. Exact Algorithms for the Minimum Genus Problem

1. What is the best parameter setting?

2. Are the choices of the parameters orthogonal to each other?

Our C++ code is compiled with GCC 4.8.5, and runs on a single core of an Intel(R) Xeon(R)
CPU E5-2420 v2 with 192 GB DDR3 Memory @ 1600 MHz under Ubuntu 14.04. We use the
SAT solver lingeling (improved version for SMT Competition 2015 by Armin Biere)5, the Open
Graph Drawing Framework [Chi+13], and do not apply a virtual memory limit but a time limit
of 20 minutes.

In the Tables 2.K and 2.L we use the abbreviations biY for binary face representation and
biN for the initial representation; cuY for special treatment of degree-three vertices and cuN for
the initial formulation; roR for the rotation system variant using pvu,w variables, roI using qvj,u,
and roB using rvx,y,z; inY for the incremental formulation and inN for the initial formulation; skY

for the face skipping speed-up and skN for the initial method. All tables show the number of
solved instances for each variant, the size of the common set (solved by both), the average time
on the common set for each variant, and difference in solved instances and run-time.

Table 2.K(a) compares the binary face index representation in all variants. The impact is huge:
independent of the choice of the other parameters it is always better to use the binary
representation. The number of solved instances increases by approx. 40 % whereas the
run-time drops down to approx. 8 % compared to the variants that do not use the binary
face representation.

Table 2.K(b) compares the usage of special variables and constraints for degree-three vertices
in all variants. The result is not as clear as in the table for the binary face representation.
There are parameter choices which double the run-time and lower the number of solved
instances, as well as parameter choices with opposite behavior.

Table 2.K(c) compares the incremental formulations that use solver warm starts in all variants.
With a few exceptions we almost always increase the number of solved instances and reduce
the run-time.

Table 2.K(d) compares the face skipping method in all variants. The results are intermingled,
but if we focus on biY we have a clear trend. We solve almost as many instances as without
face skipping, but we safe a good portion of run-time.

Table 2.L(a) compares the effect of using the betweenness formulation instead of the initial
formulation (for rotation systems) in all SAT variants. It is clear that we should refrain
from using the betweenness variant as it increases the run-time and lowers the number of
solved instances.

Table 2.L(b) compares the index reformulation with the initial formulation (for rotation
systems) in all SAT variants. We should refrain from using the index reformulation for the
same reasons as for the betweenness reformulation. Especially, when we focus on biY the
run-time is more than doubled with almost no effect on the number of solved instances.

Table 2.L(c) compares the betweenness reformulation with the index reformulation. The result
is mixed. Restricted to biY we gain time but also lose some of the solved instances.

The parameter choice we deduce from the experiments is

5The previous version was the winner of the Sequential Appl. SAT+UNSAT Track of the SAT competition
2014 [Bie14]. This improved version is even faster. We thank Armin Biere for providing the most recent version
(as of 2015-06-05) of the lingeling SAT solver.

Chapter 2. Exact Algorithms for the Minimum Genus Problem 37

1. Table 2.K(a) shows that we have to pick biY.

2. Tables 2.L show that the initial formulation for rotation systems of general degree is the
best variant, so we pick roR.

3. There are eight possible parameter settings left. For this, we filter the data into a single
Table 2.M. Here we see that with almost no difference in the number of solved instances,
the variant with parameters inN, cuY and skY achieves the best run-time.

Thus, on this sample of 405 Rome graph instances we achieve the best result with binary face
representations, our initial rotation system formulation, special variables and constraints for
cubic vertices, as well as applying face skipping. We will use this parameter setting in the next
paragraphs.

ILP and SAT Performance on Real World Graphs. Our C++ code is compiled with GCC 4.9.2,
and runs on a single core of an AMD Opteron 6386 SE with DDR3 Memory @ 1600 MHz under
Debian 8.0. We use the ILP solver CPLEX 12.6.1, the SAT solver lingeling, and the Open Graph
Drawing Framework (www.ogdf.net, GPL), and apply a 72 GB memory limit.

We consider the established Rome and North benchmark sets of graphs collected from real-
world applications. We use the ILP and SAT approaches to compute the genera of all 8249
(423) non-planar Rome (North) graphs. Each approach is run with a 30-minutes time limit for
each graph to compute its genus; we omit 10 (North) instances that failed due to the memory
limitation. Characteristics about the data sets and the resulting formulations can be found in
Table 2.N.

Figure 2.O(a) shows the success rate (computations finished within the time limit) for the
Rome graphs, depending on the number of vertices of the input graph. Both the SAT and ILP
approach exhibit comparable numbers, but nearly always the success rate of the SAT approach
is as good as or better than the ILP’s. However, the differences are not significant. Instances
with up to 40 vertices can be solved with a high success rate; our approach degrades heavily for
graphs with more than 60–70 vertices. However, it is worth noting that even if the genus is not
calculated to provable optimality, we obtain highly nontrivial bounds on the genus of the graphs
in question.

In Figure 2.O(b) we see that, given any fixed time limit below 30 minutes, the SAT approach
clearly solves more instances than the ILP approach. Note that the curve that corresponds to
the solved SAT instances flattens out very quickly.

When we compare the success rates to the density of the NPC (see Figure 2.O(c)), we see
the same characteristics as in Figure 2.O(a). Both approaches are able to solve instances with
density (i.e., |E|/|V |) up to 1.6 with a high success rate but are typically not able to obtain
provably optimal values for densities above 1.9.

Finally, we compare the average running times of the instances that are solved by both
approaches. Out of the 8249 non-planar Rome graphs we are able to solve 2571 with SAT and
ILP formulation, and additionally 96 (24) more with the SAT (ILP, respectively). Except for
very small graphs, the average running time of the SAT approach is always at least one or two
orders of magnitude lower than the average running time of the ILP approach, see Figure 2.O(d).

Considering the non-planar North graphs, Figure 2.O(e) shows that the success rates of both
approaches are comparable again. As before, the differences are not significant. However, ten
instances could not be solved due to the high memory consumption caused by the exponential
number of constraints (IRI

3) and rules (BRI
5). Since the results for the North graphs are analogous

to those for the Rome graphs, we omit discussing them in detail.
Generally, we observe that the SAT approach is particularly fast to show the existence of an

embedding but relatively slow to prove that there is no embedding with a given number of faces.

38 Chapter 2. Exact Algorithms for the Minimum Genus Problem

(a) bin. face rep. solved avg. time[sec]
config biN biY both diff biN biY diff

cuN inN skN roR 108 150 108 42 33.2 1.8 −94%
cuN inN skN roB 104 135 103 31 118.8 5.1 −95%
cuN inN skN roI 102 145 102 43 113.9 22.5 −80%
cuN inN skY roR 108 150 108 42 32.8 1.8 −94%
cuN inN skY roB 104 135 103 31 119.2 5.1 −95%
cuN inN skY roI 102 145 102 43 113.4 22.8 −79%
cuN inY skN roR 112 151 112 39 104.0 1.3 −98%
cuN inY skN roB 106 147 105 41 65.5 10.5 −83%
cuN inY skN roI 98 146 98 48 49.5 10.4 −79%
cuN inY skY roR 110 147 110 37 60.9 1.6 −97%
cuN inY skY roB 105 146 105 41 75.4 1.0 −98%
cuN inY skY roI 101 141 101 40 88.8 15.6 −82%
cuY inN skN roR 103 146 103 43 59.1 0.4 −99%
cuY inN skN roB 103 142 103 39 124.1 3.9 −96%
cuY inN skN roI 98 147 98 49 81.5 12.6 −84%
cuY inN skY roR 103 146 103 43 58.7 0.3 −99%
cuY inN skY roB 103 142 103 39 124.0 3.9 −96%
cuY inN skY roI 98 147 98 49 81.7 12.6 −84%
cuY inY skN roR 104 151 104 47 71.4 1.0 −98%
cuY inY skN roB 103 150 103 47 54.3 1.0 −98%
cuY inY skN roI 102 145 102 43 87.9 22.9 −73%
cuY inY skY roR 105 150 105 45 52.7 0.9 −98%
cuY inY skY roB 100 148 100 48 82.3 0.6 −99%
cuY inY skY roI 102 144 102 42 89.2 5.3 −94%

average 103 146 103 43 80.8 6.8 −92%

(b) dv = 3? solved avg. time[ms]
config cuN cuY both diff cuN cuY diff

biN inN skN roR 108 103 100 -5 28.9 57.8 +99%
biN inN skN roB 104 103 97 -1 98.2 81.5 −17%
biN inN skN roI 102 98 95 -4 94.7 79.5 −15%
biN inN skY roR 108 103 100 -5 28.7 57.4 +100%
biN inN skY roB 104 103 97 -1 98.3 81.5 −17%
biN inN skY roI 102 98 95 -4 94.6 79.6 −15%
biN inY skN roR 112 104 101 -8 80.1 62.6 −21%
biN inY skN roB 106 103 100 -3 52.5 35.8 −31%
biN inY skN roI 98 102 95 4 40.3 62.0 +53%
biN inY skY roR 110 105 99 -5 56.7 38.9 −31%
biN inY skY roB 105 100 98 -5 56.1 66.6 +18%
biN inY skY roI 101 102 96 1 79.8 57.4 −28%
biY inN skN roR 150 146 146 -4 8.7 5.3 −38%
biY inN skN roB 135 142 131 7 7.7 12.7 +65%
biY inN skN roI 145 147 143 2 27.6 19.1 −30%
biY inN skY roR 150 146 146 -4 8.0 5.2 −34%
biY inN skY roB 135 142 131 7 7.7 12.9 +67%
biY inN skY roI 145 147 143 2 27.8 19.2 −31%
biY inY skN roR 151 151 150 0 11.4 13.9 +22%
biY inY skN roB 147 150 147 3 14.7 9.7 −33%
biY inY skN roI 146 145 142 -1 26.5 30.1 +13%
biY inY skY roR 147 150 147 3 8.9 8.6 −3%
biY inY skY roB 146 148 145 2 6.1 7.2 +19%
biY inY skY roI 141 144 137 3 22.7 12.2 −46%

average 125 124 120 -1 36.1 33.4 −7%

(c) incr. form. solved avg. time[sec]
config inN inY both diff inN inY diff

biN cuN skN roR 108 112 102 4 33.2 62.6 +88%
biN cuN skN roB 104 106 101 2 118.7 52.7 −55%
biN cuN skN roI 102 98 95 -4 63.9 38.5 −39%
biN cuN skY roR 108 110 101 2 26.4 35.6 +34%
biN cuN skY roB 104 105 101 1 116.9 47.8 −59%
biN cuN skY roI 102 101 95 -1 75.6 80.3 +6%
biN cuY skN roR 103 104 98 1 58.7 47.9 −18%
biN cuY skN roB 103 103 99 0 107.3 35.1 −67%
biN cuY skN roI 98 102 94 4 80.7 68.7 −14%
biN cuY skY roR 103 105 98 2 53.2 45.5 −14%
biN cuY skY roB 103 100 96 -3 93.9 52.5 −44%
biN cuY skY roI 98 102 94 4 81.9 68.2 −16%
biY cuN skN roR 150 151 150 1 12.7 11.4 −10%
biY cuN skN roB 135 147 133 12 10.7 11.8 +9%
biY cuN skN roI 145 146 140 1 27.6 25.8 −6%
biY cuN skY roR 150 147 147 -3 7.3 8.9 +22%
biY cuN skY roB 135 146 134 11 10.6 5.5 −47%
biY cuN skY roI 145 141 138 -4 28.5 22.6 −20%
biY cuY skN roR 146 151 146 5 5.3 3.4 −36%
biY cuY skN roB 142 150 142 8 14.4 3.8 −73%
biY cuY skN roI 147 145 144 -2 22.6 30.2 +33%
biY cuY skY roR 146 150 146 4 5.2 4.6 −11%
biY cuY skY roB 142 148 141 6 14.2 4.5 −68%
biY cuY skY roI 147 144 142 -3 19.2 12.2 −36%

average 124 126 120 2 39.7 28.7 −28%

(d) face skip. solved avg. time[sec]
config skN skY both diff skN skY diff

biN cuN inN roR 108 108 108 0 33.2 32.8 −1%
biN cuN inN roB 104 104 104 0 122.6 122.8 ±0%
biN cuN inN roI 102 102 102 0 113.9 113.4 ±0%
biN cuN inY roR 112 110 103 -2 77.3 51.9 −32%
biN cuN inY roB 106 105 102 -1 54.4 53.9 ±0%
biN cuN inY roI 98 101 94 3 43.3 67.6 +56%
biN cuY inN roR 103 103 103 0 59.1 58.7 ±0%
biN cuY inN roB 103 103 103 0 124.1 124.0 ±0%
biN cuY inN roI 98 98 98 0 81.5 81.7 ±0%
biN cuY inY roR 104 105 97 1 48.5 43.3 −10%
biN cuY inY roB 103 100 96 -3 51.2 70.2 +37%
biN cuY inY roI 102 102 100 0 87.4 89.4 +2%
biY cuN inN roR 150 150 150 0 12.7 12.2 −3%
biY cuN inN roB 135 135 135 0 10.7 10.6 ±0%
biY cuN inN roI 145 145 145 0 27.9 28.1 ±0%
biY cuN inY roR 151 147 147 -4 9.9 8.9 −10%
biY cuN inY roB 147 146 145 -1 13.7 6.3 −54%
biY cuN inY roI 146 141 138 -5 23.0 18.5 −19%
biY cuY inN roR 146 146 146 0 5.3 5.2 −1%
biY cuY inN roB 142 142 142 0 14.4 14.5 ±0%
biY cuY inN roI 147 147 147 0 22.3 22.2 ±0%
biY cuY inY roR 151 150 150 -1 13.5 10.6 −21%
biY cuY inY roB 150 148 148 -2 9.4 7.8 −17%
biY cuY inY roI 145 144 140 -1 28.4 12.4 −56%

average 125 124 123 -1 40.2 38.9 −3%

Tabl2.K e 2.K: Comparison of all 48 SAT variants. (a) effect of the binary face index reformulation, (b)
effect of special variables and constraints for cubic vertices, (c) effect of the incremental formulation in
the iterative process, (d) effect of face skipping in the iterative process. See Table 2.L for the remaining
results.

Chapter 2. Exact Algorithms for the Minimum Genus Problem 39

(a) BI vs.BBet solved avg. time[sec]
config roR roB both diff roR roB diff

biN cuN inN skN 108 104 100 -4 26.8 97.5 +264%
biN cuN inN skY 108 104 100 -4 26.5 97.4 +267%
biN cuN inY skN 112 106 103 -6 50.7 51.3 +1%
biN cuN inY skY 110 105 101 -5 51.3 63.5 +23%
biN cuY inN skN 103 103 96 0 57.5 81.1 +40%
biN cuY inN skY 103 103 96 0 57.0 80.6 +41%
biN cuY inY skN 104 103 96 -1 57.1 32.7 −42%
biN cuY inY skY 105 100 96 -5 48.5 56.6 +16%
biY cuN inN skN 150 135 135 -15 6.2 10.7 +71%
biY cuN inN skY 150 135 135 -15 6.2 10.6 +71%
biY cuN inY skN 151 147 146 -4 10.9 14.2 +28%
biY cuN inY skY 147 146 144 -1 6.3 5.9 −5%
biY cuY inN skN 146 142 142 -4 4.5 14.4 +217%
biY cuY inN skY 146 142 142 -4 4.5 14.5 +224%
biY cuY inY skN 151 150 150 -1 14.2 10.1 −29%
biY cuY inY skY 150 148 148 -2 10.7 7.8 −26%

average 128 123 121 -5 23.9 35.2 +47%

(b) BI vs.BInd solved avg. time[sec]
config roR roI both diff roR roI diff

biN cuN inN skN 108 102 100 -6 27.3 97.6 +256%
biN cuN inN skY 108 102 100 -6 27.1 97.3 +259%
biN cuN inY skN 112 98 98 -14 51.2 49.5 −3%
biN cuN inY skY 110 101 97 -9 30.8 73.7 +139%
biN cuY inN skN 103 98 94 -5 57.3 50.6 −11%
biN cuY inN skY 103 98 94 -5 56.9 50.6 −11%
biN cuY inY skN 104 102 97 -2 61.2 65.4 +6%
biN cuY inY skY 105 102 96 -3 46.1 78.7 +70%
biY cuN inN skN 150 145 145 -5 7.4 27.9 +275%
biY cuN inN skY 150 145 145 -5 6.8 28.1 +313%
biY cuN inY skN 151 146 145 -5 10.9 36.4 +231%
biY cuN inY skY 147 141 139 -6 6.0 21.8 +261%
biY cuY inN skN 146 147 145 1 5.3 20.1 +278%
biY cuY inN skY 146 147 145 1 5.2 20.1 +284%
biY cuY inY skN 151 145 145 -6 12.8 30.9 +141%
biY cuY inY skY 150 144 143 -6 2.5 12.8 +419%

average 128 123 120 -5 22.2 43.3 +95%

(c) BInd vs.BBet solved avg. time[sec]
config roI roB both diff roI roB diff

biN cuN inN skN 102 104 99 2 107.8 107.0 ±0%
biN cuN inN skY 102 104 99 2 107.5 107.3 ±0%
biN cuN inY skN 98 106 96 8 39.5 39.4 ±0%
biN cuN inY skY 101 105 98 4 83.7 51.6 −38%
biN cuY inN skN 98 103 96 5 81.4 74.3 −8%
biN cuY inN skY 98 103 96 5 81.6 74.4 −8%
biN cuY inY skN 102 103 98 1 72.4 38.1 −47%
biN cuY inY skY 102 100 96 -2 69.5 61.6 −11%
biY cuN inN skN 145 135 134 -10 24.4 10.2 −58%
biY cuN inN skY 145 135 134 -10 24.6 10.1 −58%
biY cuN inY skN 146 147 143 1 34.4 14.9 −56%
biY cuN inY skY 141 146 137 5 19.4 5.8 −69%
biY cuY inN skN 147 142 141 -5 18.5 12.0 −34%
biY cuY inN skY 147 142 141 -5 18.4 12.1 −34%
biY cuY inY skN 145 150 145 5 30.9 9.1 −70%
biY cuY inY skY 144 148 141 4 11.8 4.2 −64%

average 122 123 118 1 46.6 34.3 −26%

Tabl 2.Le 2.L: Comparison of all 48 SAT variants. (a) initial formulation vs. betweenness reformulation, (b)
initial formulation vs. index reformulation, (c) index reformulation vs. betweenness reformulation. See
Table 2.K for the remaining results.

inY inY inY inY inN inN inN inN

cuY cuY cuN cuN cuY cuY cuN cuN

skY skN skY skN skY skN skY skN

solved instances 150 151 147 151 146 150 146 150
avg. run-time [sec] 8.6 13.9 8.9 11.4 5.2 8.7 5.3 8.0

Tabl 2.Me 2.M: Compressed version of the results of Table 2.K and 2.L when we restrict the data to roR and
biY.

40 Chapter 2. Exact Algorithms for the Minimum Genus Problem

10 20 30 40 50 60 70 80 90 100

75

150

225

300

#
in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100

25

50

75

100

(a) input graph |V | (Rome)

%
su
cc
es
s

instances

success SAT

success ILP

0 10 20 30
0

1000

2000

(b) time in min. (Rome)

#
so
lv
ed

in
st
an

ce
s

1.6 1.8 2 2.2
0

200

400

600

800

#
in
st
an

ce
s

1.6 1.8 2 2.2

25

50

75

100

(c) NPC density (Rome)

%
su
cc
es
s

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

#
in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100

100

101

102

103

(d) input graph |V | (Rome)

av
g.

ru
n
-t
im

e
(s
ec
)

10 20 30 40 50 60 70 80 90 100

20

40

60

80

#
in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100

25

50

75

100

(e) input graph |V | (North)

%
su
cc
es
s

Figur2.O e 2.O: Rome Graphs: (a) success rate per number of nodes, (b) solved instances per given time,
(c) success rate per non-planar core density |E|/|V |, (d) average running time per number of nodes where
both approaches were successful. North graphs: (e) success rate per number of nodes.

Chapter 2. Exact Algorithms for the Minimum Genus Problem 41

Rome

range average for computation on NPC
|V | |V | %|V3| f̄ #vars #cons

10–40 12.8 64.2 10.0 616.1 3399.5
41–60 18.5 60.3 15.3 1310.7 7639.9
61–80 26.8 59.4 22.5 2624.4 15735.1
81–100 36.4 58.5 30.9 4718.4 28778.3

North

range average for computation on NPC
|V | |V | %|V3| f̄ #vars #cons

10–40 12.6 38.3 17.4 2200.0 102295.9
41–60 24.6 40.3 29.9 4916.7 197577.3
61–80 32.1 43.5 35.5 7741.7 249864.6
81–100 24.3 40.6 34.7 7146.7 632634.6

Tabl 2.Ne 2.N: Characteristics of instances and resulting formulations. The graphs from the Rome (left
table) and North (right table) benchmark sets are grouped by their number of vertices in the given
ranges. For each group, we give the averages for the following values: number of vertices and percentage
of degree-three vertices in the NPC, upper bound f̄ on the number of faces, number of variables and
constraints in the ILP formulation.

This is of particular interest for non-planar graphs that allow a genus-1 embedding, since there
the SAT formulation is quick to find such a solution and need not prove that a lower surface
is infeasible. The SAT formulation’s behavior in fact suggests an easy heuristical approach: if
solving the SAT instance for f faces needs a disproportionally long running time (compared to
the previous iterations for lower face numbers), this typically indicates that it is an unsatisfiable
instance and f − 2 faces is the optimal value.

Comparison to Existing Genus Computations. An evaluation of exhaustive search algorithms for
determining the genus distribution of complete graphs was performed in [Sch12]. Fixing the
rotation of the first vertex, it is possible to compute the genus distribution of the complete
graph K7 within 896 hours of computation (112 hours on 8 parallel threads). While both our
approaches perform significantly better, there is a notable (and w.r.t. to the above evaluations
particularly surprising) difference in their performance: the SAT approach needs 1 hour to find
and prove the optimal genus; solving the ILP takes only 30 seconds.

A circulant Cn(S) is the Cayley graph of Zn with generating set S. Conder and Grande [CG15]
recently characterized all circulants with genus 1 and 2. A crucial part of the characterization
is the determination of the genus of several sporadic cases where the lower bounds are more
problematic. At the same time, these sporadic cases constitute the main obstacle in both
obtaining a simpler proof, as well as extending the results to higher genera. By far the most
difficult case is proving that the genus of C11(1, 2, 4) is at least 3. The proof takes three pages
of theoretical analysis and eventually resorts to a computational verification of three subcases,
taking altogether around 85 hours using the MAGMA computational algebra system in a nontrivial
problem-specific setting. The ILP solver needs 180 hours (7.5 days) to determine the genus
without using any theoretical results or problem-specific information. The SAT solver takes
roughly 2 weeks.

2.8 Minimum Genus on Non-Orientable Surfaces

Remember the definition of facial walks on a non-orientable surface. By σ we denote the current
state (initialized with σ = 1). After the traversal of an edge e = vu we update the state
σ := λ(e)σ and continue along πσu(e).

Determining the minimum genus is now equivalent to finding a rotation system π together
with edge signs λ such that the number of faces is maximized over all feasible (λ, π) pairs.

Recall the definitions in Lemma 1.3. By S(e) := SN(e) we denote the set of both directions
of each edge e with the possible facial walk states that we had before traversing the edge e itself.

42 Chapter 2. Exact Algorithms for the Minimum Genus Problem

Let S :=
⋃
e∈E S(e). In the orientable case we ensured that we traverse each edge exactly twice

(each of the two darts exactly once). We now have to guarantee that for each edge e exactly
two of the states in S(e) are used (cf. Lemma 1.3). Thus, we introduce variables zs for s ∈ S to
denote if s is used in one of the faces.

Furthermore, we use the new variable `e for each edge which is true if and only if λ(e) = 1.
The old containment variables cia are now replaced by cis variables (for i ∈ [f] and s ∈ S).

We continue to use the pvu,w variables to denote that vw = πv(uv). Note that π−1 (needed if the
current state is σ = −1) is represented by swapping the indices of the p variables. We keep the
constraints BRI to force them into a rotation system.

The remaining part of the formulation BNonO for the non-orientable case is:

¬(cis ∧ cjs) ∀s ∈ S, i < j ∈ [f] (BCNonO
1)∨

s∈S
cis ∀i ∈ [f] (BCNonO

2)∨
i∈[f]

cis ↔ zs ∀s ∈ S (BCNonO
3)∨

S⊂S(e),|S|=2

∧
s∈S

zs ∀e ∈ E (BCNonO
4)

¬
(∨

S⊂S(e),|S|=3

∧
s∈S

zs

)
∀e ∈ E (BCNonO

5)

pvu,w ∧ ciuv,+ ∧ `{v,w} → civw,+ ∀v ∈ V , u 6= w ∈ N(v), i ∈ [f] (BWNonO
1)

pvu,w ∧ ciuv,+ ∧ ¬`{v,w} → civw,− ∀v ∈ V , u 6= w ∈ N(v), i ∈ [f] (BWNonO
2)

pvw,u ∧ ciuv,− ∧ `{v,w} → civw,− ∀v ∈ V , u 6= w ∈ N(v), i ∈ [f] (BWNonO
3)

pvw,u ∧ ciuv,− ∧ ¬`{v,w} → civw,+ ∀v ∈ V , u 6= w ∈ N(v), i ∈ [f] (BWNonO
4)∨

e∈E
¬`e2.3a (2.3a)

Theorem. The SAT formulation BNonO above solves MGP on non-orientable surfaces with
respect to f .

Proof. As before, the BRI constraints ensure that we have a rotation system π (induced by the
pv variables). The signature assignment λ is arbitrary and given by the `e variables, but we
ensure that we have an embedding on a non-orientable surface (see Lemma 1.2) by forcing at
least one of the `e to be false, see (2.3a). Otherwise, we would have all signs +1, which is
an embedding on an oriented surface. In (BWNonO

1)–(BWNonO
4) we have all four cases that can

occur when traversing an edge (the state when going into v by uv is +/−, and the state of the
successor/predecessor in the rotation has sign +/−). The constraints (BCNonO

4) and (BCNonO
5)

select exactly two elements of S(e) for each edge e. By (BCNonO
3) we assign a face index to each

used state s ∈ S. Additionally, (BCNonO
2) prevents faces from being empty. Finally, (BCNonO

1)
ensures that a single state is not in two (or more) faces simultaneously. �

Note that (2.3a) does not fit into our decomposition of the formulations in six blocks.

Remark. All of the speed-up techniques and the transformations for polynomially sized formula-
tions can be applied in the non-orientable case. ILP models are analogous to the SAT formulation
described above. y

We tested our model on graphs where we have a known minimum non-orientable genus greater
than zero. Examples are

• K5, see [Whi84, Theorem 11.19];

Chapter 2. Exact Algorithms for the Minimum Genus Problem 43

• K3,3, see [Rin65b, Equation (1)];

• the subgroup graphs6 of the groups Z4 o Z4, Z9 o Z9 and the dihedral group D16. This
result can be found in [MBS12] which is a generalization of the underlying work [BR06].

We did not perform any detailed run-time experiments in the non-orientable case. The
computations for the K5 and K3,3 took a few days. The remaining examples required a few
weeks each. We were able to achieve a significant speed-up using the following result.

Definition (local change, equivalent embeddings). A local change of an embedding (λ, π)
changes the clockwise ordering to an anti-clockwise ordering at some vertex v, i.e., πv is replaced
by its inverse π−1

v , and λ(e) is replaced by −λ(e) for all edges e that are incident with v. Two
embeddings are equivalent if one can be obtained from the other by a sequence of local changes.y

Lemma 2.4. 2.4[MT01, p. 100] Let Π = (λ, π) be an embedding. For an arbitrary spanning tree
T there is an embedding equivalent to Π such that the signs of the edges in T are all positive.

Using the lemma above, we can strengthen constraint (2.3a) to∧
e∈T

`e ∧
(∨

e/∈T
¬`e
)
, 2.3a′(2.3a′)

where we fixed an arbitrary spanning tree T of G.

2.9 Conclusion and Open Problems

The MGP is very difficult from the mathematical, algorithmic, and practical perspective—the
problem space is large and seems not to be well-structured, the existing algorithms are error-prone
and/or very difficult to implement, and only little progress was made on the (practice-oriented)
algorithmic side. In this chapter we have presented the first ILP and SAT formulations, together
with several variants and alternative reformulations, for the problem, and investigated them in an
experimental study. Our approach leads to the first (even easily!) implementable general-purpose
minimum genus algorithms. Besides yielding practical algorithms for small to medium-sized
graphs and small genus, one of the further advantages of our approach is that the formulations
are adaptable and can be modified to tackle related problems. For example, the existence of
polyhedral embeddings [MT01], or embeddings with given face lengths, say 5 and 6 as in the
case of graph-theoretic models of carbon molecules, so-called fullerenes, see [Dez+00].

On the negative side, our implementations cannot deal with too large graphs without resorting
to extensive computational resources. However, this is not very surprising considering the difficulty
of the problem—a fast exact algorithm could be used to solve several long-standing open problems,
such as completing the list of forbidden toroidal minors. We also see—and hope for—certain
similarities to the progress on exact algorithms for the well-known crossing number problem: while
the first published report [Buc+05] was only capable of solving Rome graphs with 30–40 vertices,
it led to a series of improvements that culminated in the currently strongest variant [CMB08]
which is capable of tackling even the largest Rome graphs.

There are several open questions and unused ideas to further strengthen the formulations
or find the ideal trade-off between run-time and memory usage. Some experimental work will
be necessary to find the optimal threshold ϑ (defined in Section 2.4) where we switch from
exponentially (in the constant parameter ϑ) sized formulation for rotation systems to one of

6[BR06, Def. 1.1] The subgroup graph of a group is the graph whose vertices are the subgroups of the group
and two vertices, say H1 and H2, are connected by an edge if and only if H1 ≤ H2 and there is no subgroup K
such that H1 � K � H2.

44 Chapter 2. Exact Algorithms for the Minimum Genus Problem

the presented polynomially sized formulations. The same idea can be used to investigate the
effect of special variables and constraints for low-degree vertices. Here we only considered the
cubic (dv = 3) case. The principle also works for higher degrees and it could be worthwhile to
spend the time searching for an algorithmic formulation to create the necessary constraints in a
parameterized approach. This could even be used to omit the pv variables for general degree
completely and create specialized variables for each vertex degree.

Recently, there was a result [CR17]7 by Chen and Reidys about a new “easy-to-check”
necessary condition for a given embedding to be an embedding of minimum genus. It is based
on an interesting combinatorial way to represent graphs: Let π be a permutation. By |π| we
denote the number of cycles in π. A fatgraph is a triple (α, β, δ) of permutations on [2m] where
α is a fixed-point free involution (i.e., α2 = 1) and δ = αβ. The connection to our graphs is
then: We label the dart set A of an input graph G using labels from the set [2|E|] so that each
label appears exactly once. This induces two permutations α and β, where α is a fixed-point
free involution, whose cycles consist of the labels of the two darts of the same edge and β-cycles
represent the counter-clockwise cyclic arrangement of all darts incident to the same vertex. It
follows that

|β| − |α|+ |δ| = 2− 2g.

The necessary criterion for an embedding to be a minimum genus embedding is then given by
[CR16, Corollary 4.8].

As mentioned earlier, we did not use PBS solvers for our formulations. It would be interesting
to see how they compare to our initial formulation as well as how our optimized formulations
(including face skipping) compare to simple PBS formulations.

Finally, we briefly sketched how to build formulations for the MGP on non-orientable surfaces.
The methods of this chapter can be applied to such formulations. But furthermore, there are
additional results to strengthen the according formulations, for example:

Lemma. [MT01, Lem. 4.1.3] If W is a (λ, π)-facial walk, then the number of appearances of
edges on W with negative signature is even.

Considering non-orientable surfaces, we face the question if there are suitable benchmark
instances to test algorithmic minimum genus computations. The Rome and North instances are
natural candidates. Also the classification of circulants is a source for test instances. Due to the
increased complexity by also considering edge signs we expect that our methods are only able
solve MGP for comparably small instances.

7See [CR16] for a publicly available version.

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 45

Chapter 3

Limits of Greedy Approximation Algorithms
for the Maximum Planar Subgraph Problem

In this chapter we consider approximation algorithms for the Maximum Planar Subgraph problem
(MPS). The Maximum Planar Subgraph problem asks for a planar subgraph with maximum
edge cardinality of a given simple, undirected graph. It is known to be MaxSNP-hard [Căl+98,
Theorem 4.1] and the currently best known approximation algorithm achieves a ratio of 4/9.

We analyze the general limits of approximation algorithms for MPS, based either on planarity
tests or on greedy inclusion of certain subgraphs. On the one hand, we cover upper bounds
for the approximation ratios. On the other hand, we show NP-hardness for thereby arising
subproblems, which hence would have to be approximated themselves. We also provide simpler
proofs for already known facts.

In addition to the original publication [CHW16], this chapter includes notes on worst-case
examples with non-constant skewness for the best currently known approximation algorithm by
Călinescu et al. [Căl+98], on algorithms based on graph decompositions (cut- and path-width)
and an alternative proof for the 7/18-approximation algorithm in [Căl+98].

3.1 Introduction

The aim of our work in the field of MPS approximation algorithms was to study the approximation
ratio of variants of the currently best known algorithm “Cactus Algorithm” [Căl+98]. We also
wanted to investigate new algorithms with better ratios. As our work did not result in such
algorithms, we focused on limits for the ratio of MPS approximation algorithms. The insights
we gained from studying special algorithms allow us to bound the approximation guarantee for
several classes of approximation algorithms. The focus of our work is on:

• Algorithms inspired by planarity tests. Planarity test algorithms can easily be extended
to obtain MPS heuristics. We show that such algorithms can build structures during the
planarity test that likely prohibit the expansion to good MPS approximations.

• Algorithms inspired by generalized versions of the Cactus Algorithm. The Cactus Algorithm
searches for triangles sharing at most one vertex with each other and connecting the thereby
build cactus structures with single edges. Greedy algorithms that search for denser
structures are a natural generalization of this algorithm. We show that there are limits on
the approximation ratio of such generalized versions.

Recently, Chalermsook and Schmid [CS17] found a greedy algorithm that searches for
structures denser than triangles. Their algorithm is the now best greedy approximation algorithm

46 Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem

for MPS but it still does not achieve the ratio of the algorithm by [Căl+98]. Note that no
examples for the tightness of the algorithm by Chalermsook and Schmid are known, only a lower
bound on the approximation ratio. Our upper bound from Theorem 3.17 applies also to this
generalization variant of the Cactus Algorithm.

3.2 Maximality

While the Observation 3.1 is already known to be true, we provide a simpler instance than
the original source [DFF85] by Dyer et al. They use a 3-colorable planar triangulated graph
extended by Θ(n) edges that form three cycles on the node partitions induced by the coloring.
Our argument is based on a K5.

Definition (bundle). For two nodes u and v, we define a u-v-bundle Btu,v of thickness t as a
set of t parallel 2-paths between u and v; the new inner nodes I(Btu,v) have degree 2. y

Observation 3.1.3.1 A maximal planar subgraph of a given graph G yields an approximation
ratio of at most 1/3 for the MPS problem on G.

Proof. Consider the complete graph K5 on 5 nodes. We construct G by replacing a single edge vu
by B`v,u, and adding a Hamiltonian path P = p1, . . . , p` on the nodes I(B`v,u). Let

S :=
(
E(K5) \ {vu}

)
∪ {vpk | k odd} ∪ {pku | k even}.

S is a maximal planar subgraph of G since adding any edge yields a K5 subdivision (cf. Figure 3.A).
An MPS H can be obtained from G by removing any one edge outside of B`v,u. The approximation
ratio is thus at most

lim
`→∞

|S|
|E(H)| = lim

`→∞
|E| − 1 + `

|E| − 1 + 3`
=

1

3
.

�

3.3 Algorithms Inspired by Planarity Tests

First, we focus on DFS- and BFS-based algorithms providing hardness results and bounds for
families of approximation algorithms. We denote the problem of finding a maximum planar
subgraph that contains a given DFS (or BFS) tree by MPS-DFS (or MPS-BFS, respectively). In
particular, any known algorithm based on planarity-testing in fact solves MPS-DFS heuristically.

Definition (k-book, k-book embedding). A k-book is a collection of k half-planes (pages)
that share a common boundary (spine). A k-book embedding is an embedding of a graph into a
k-book such that the vertices are placed on the spine, every edge is drawn on a single page, and
no two edges cross each other. y

Definition (circle graph, overlap graph). Consider a circle with straight-line chords C. A
circle graph is the intersection graph of the latter: C are its nodes, two nodes are adjacent if and
only if their chords cross. The overlap graph is the graph where each chord is an edge, and the
chords’ end nodes are connected by a Hamiltonian cycle according to the original drawing. y

Definition (c-CIG). For a given circle graph G = (V,E) and c, k ∈ N, the problem of finding
a subset V ′ ⊆ V , such that |V ′| ≥ k and G[V ′] is c-colorable is the c-Colorable Induced Subgraph
problem for Circle Graphs (c-CIG). y

Lemma. [CL91] c-CIG is NP-hard for c ≥ 2.

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 47

Figur 3.Ae 3.A: (cf. Obs. 3.1) Maximal planar subgraph S (stroked edges) for ` = 6.

We will use the following result combined with the lemma above to show that MPS-DFS is
hard.

Lemma. Any solution for c-CIG corresponds to a c-book embedding of the respective overlap
graph.

Proof. The circle corresponds to the spine and each color class is embedded in its own page. �

Theorem 3.2. 3.2MPS-DFS is NP-hard.

Proof. We perform a reduction from 2-CIG to MPS-DFS. Let (G, k) be an instance for 2-CIG and
C = (W,F) be the corresponding overlap graph. Let n := |W |, m := |F |, and π : [n]→W denote
the cyclic order of W induced by C. Let Bi := Bmπi,πi+1

denote a πi-πi+1-bundle of thickness

m and B′i := Bi ∪ {πiπi+1}. We construct the input graph D :=
(⋃

i∈[n] V (Bi), F ∪ EB

)
for

MPS-DFS, with EB :=
⋃
i∈[n]E(B′i); see Figure 3.B. The set

T := {πiπi+1, uπi+1 | 0 ≤ i < n− 1, u ∈ I(Bi)} ∪ {uπn−1 | u ∈ I(Bn−1)},

is a DFS tree of D: We start at π0 with π0π1. Next, we pick all edges of B0 that are incident to
π1 since the I(B0)-vertices lead only to π0 (visited). We iterate this until we arrive at πn−2πn−1.
Finally, we pick all edges connecting πn−1 with I(Bn−2) and I(Bn−1).

We show that the 2-CIG instance (G, k) has a solution if and only if D has a planar subgraph
of size ξ := k + n(2m+ 1) that contains T .

(If) Assume there is a planar embedded subgraph S of D that contains T and has ξ edges.
D contains m + n(2m + 1) edges. Removing more than m edges from D yields a graph with
less than ξ edges. Thus, there are at least m + 1 edges from each B′i in S. Consequently, for
each pair of nodes πi, πi+1 there is a path within B′i connecting them. Hence we have a cycle
through π0, π1, . . . , πn−1, π0, splitting E(S) \EB, the edge set of S corresponding to chords, into
an inside and an outside partition. Since S is planar, this induces a 2-book embedding of those
edges. Thus, we have a solution of 2-CIG on (G, k) as |E(S)| − |EB| = k.

(Only If) Assume there is a solution for 2-CIG on (G, k). This corresponds to a 2-book
embedding of a subgraph C ′ := (W,E′) of C, where the vertices W are placed on the spine
according to π, and |E′| ≥ k. Adding EB to C ′ yields a planar graph. Note that T ⊆ EB and C ′

contains |EB|+ k ≥ ξ edges. �

Corollary. There are (infinitely many) graphs G that allow a DFS tree Tv for each possible
start node v such that MPS-DFS on each (G,Tv) is NP-hard.

Proof. The proof for Theorem 3.2 works independently of the DFS start node since π is cyclic
and π0 can be chosen arbitrarily. �

48 Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem

a

b

c

d

e

a

b

c d

e
a1 b1 c1 a2 e1 d1 b2 e2 c2 d2

Figur3.B e 3.B: (cf. Theorem 3.2) The circle graph G on the left with the respective overlap graph in the
middle and a schematic depiction of the input graph D for MPS-DFS with ordering π0 = a1, π1 = b1, . . .
on the right (bundles sketched in gray).

u1 v1u2 v2u3 v3u4 v4

ẽ

Figur3.C e 3.C: (cf. Theorem 3.3) Drawing of the graph G with p = 4. Edges of S are dotted.

We will see that any algorithm adding edges to an arbitrary DFS tree has an approximation
ratio of at most 2/3. However, the corollary above shows that we cannot simply iterate over all
possible start nodes to find a tractable MPS-DFS instance and use this to approximate MPS.

Theorem 3.3.3.3 An optimal solution to MPS-DFS yields an approximation ratio of at most 2/3
for the corresponding MPS problem.

Proof. Given a number p ≥ 4, consider the following graph

G := (V, S ∪ {ẽ} ∪ T) with V := {u1, . . . , up, v1, . . . , vp} and S :=
⋃p−1

i=1
{uiui+1, vivi+1}.

The edges in S form two disjoint paths, both of length p−1. Let T be an edge set that triangulates
G[S]. Note that this is possible (cf. Figure 3.C) in a way such that

∀e ∈ T : e = uivj ∧ |i− j| ≤ 2.3.4 (3.4)

Finally, we define ẽ := upv1. Observe that |T | = 4p− 4 and P := S ∪ {ẽ} forms a Hamiltonian
path. Assume that the DFS on G returns P . We prove that any planar subgraph H of G that
contains P can have at most half of the edges of T .

Any such graph can be constructed by successively inserting edges of T into G[P]. After
each step there are at least two faces f1, f2 that have exactly one edge of T on their boundary:
Initially, adding the first edge to G[P] yields two such faces. If the next edge is embedded neither
in f1 nor in f2, the invariant holds. Otherwise, the edge is embedded in, say, f1. Then f1 is split
into two faces, one of which becomes the new f1. For each edge t ∈ T , P ∪ {t} has a cycle of
length at least p− 2, which follows from Equation (3.4) by construction of P . We conclude that
H has two faces of degree at least p− 2, and at least 2p− 10 edges are missing for H to be a
triangulation.

The edges E(G) \ {ẽ} form an MPS. We conclude that MPS-DFS approximates MPS by a
ratio of at most

lim
p→∞

|P |+ |T | − (2p− 10)

|E(G) \ {ẽ}| =
2

3
.

�

We wonder if this result is caused by the special structure of DFS trees or if this can be
extended, for example, to BFS-based algorithms:

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 49

(a) r

s

Er

V and E

Bv ∀v ∈ V

(b) r

s

Bm+1
r,v ∀v ∈ V

V and E

Bm+1
v,s ∀v ∈ V

Figur 3.De 3.D: (a) (cf. Theorem 3.5) Schematic drawing of G′ for |V | = 6. Thick edges depict bundles of
m+ 1 parallel 2-paths. (b) (cf. Theorem 3.5 and 3.8) The analogously constructed graph for the MPS
hardness proof.

Theorem 3.5. 3.5MPS-BFS is NP-hard.

Proof. We give a reduction from Hamiltonian cycle (HC) to MPS-BFS. Let G = (V,E) be an
instance for HC, n := |V |, m := |E|, s a new node, and Bv := Bm+1

v,s for each v ∈ V . We construct
an input graph G′ for MPS-BFS, where

G′ := (V ′, E′) E′ := Er ∪ E ∪ EB,

V ′ := {r} ∪ V ∪ VB, Er := {rv | v ∈ V },
VB :=

⋃
v∈V

V (Bv), EB :=
⋃

v∈V
E(Bv),

cf. Figure 3.D(a). G′ contains 2 + n(m+ 2) nodes and m+ n(2m+ 3) edges. Choose u ∈ V and
p̃ ∈ I(Bu) arbitrarily. We define

T := {p̃s} ∪ E(G′[V ′ \ {s}]) \ E,

a BFS tree of G′: Starting at r (level 0) includes all edges of Er. E cannot be taken since all
of V lies on level 1. Each node v ∈ V is connected to all of I(Bv), which lie on level 2. Only s
remains, which is connected to p̃—the first investigated node on level 2.

We show that G has a Hamiltonian cycle if and only if G′ has a planar subgraph of size
ξ := n(2m+ 4) that contains T .

(If) Given a planar subgraph H of G′ with ξ edges that contains T . There are at most m− 1
edges of G′ not in H since |E′| −m < ξ. Thus, for each bundle at least one 2-path is part of
H. It follows that there can be at most n edges of E in H since H is planar. Consequently,
|E(H)| ≤ k −m + |E′| where k := |E ∩ E(H)| ≤ n. Assuming k < n leads to |E(H)| < ξ, a
contradiction. By planarity of H we observe that H[V] forms a Hamiltonian cycle in G.

(Only if) Given a Hamiltonian cycle C on G. We construct a planar subgraph H :=
G′[T ∪ C ∪ EB] that contains T (by construction) and has ξ edges. Note that adding C to T
yields a planar graph since H[{r} ∪ V] forms a wheel graph. Likewise, adding EB preserves
planarity since G′[EB] is planar and contains a face with all nodes of V that allows an arbitrary
ordering of those nodes. �

Corollary. There are (infinitely many) graphs G that allow a BFS tree Tv for each possible
start node v such that MPS-BFS on each (G,Tv) is NP-hard.

Proof. Let G′ be the graph constructed in the proof above. We construct G′′ by replacing each
edge rv ∈ Er with Bm+1

r,v (cf. Figure 3.D(b)), and replacing each edge of E with a path containing
5 new edges where each of the 4 new nodes is also connected to r by a new edge. Note that we
can reach all nodes of V in at most 4 BFS levels, independently of the start node. Consequently,
none of the 5-paths that correspond to edges in E can be fully contained in the resulting BFS
tree. We conclude that any BFS tree constructed in the above way allows a reduction from HC
to MPS-BFS. �

50 Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem

(a)

s

s0

s1

s2

(b)

s

s0

s1

s2

(c)

s

s0

s1

s2

Figur3.E e 3.E: (cf. Theorem 3.6) Arising K3,3-subdivisions after adding two triangles to the BFS tree. One
triangle is dotted, the other is dashed. From left to right: (a) both triangles share two nodes, (b) both
triangles share a single node, (c) the triangles are disjoint.

As for DFS trees, we have that any algorithm adding edges to an arbitrary BFS tree has an
approximation ratio of at most 2/3.

Theorem 3.6.3.6 An optimal solution to MPS-BFS yields an approximation ratio of at most 2/3
for the corresponding MPS problem.

Proof. Let G = (V,E) denote a triangulated graph that allows a 3-coloring φ : V → [3] of the
nodes, for example, an even cycle C with two new nodes adjacent to all of C. We define the
input graph G′ := ({s, s0, s1, s2} ∪ V,E ∪ T) for MPS-BFS with

T :=
{
ssi | i ∈ [3]

}
∪
{
sφ(v)v | v ∈ V

}
.

T is a BFS tree rooted at s. By construction, every triangle in G′ requires 3 nodes of V of different
color. We can add at most one triangle to T , as a K3,3-subdivision would arise otherwise, see
Figure 3.E. Hence, the number of triangular faces in any planar subgraph H of G′ that contains
T is bounded by a constant, independent of |V |. Thus, the upper bound on the approximation
ratio converges from above to 2/3 for large |V |. �

Since any DFS or BFS tree is also a spanning tree, we have:

Corollary 3.7.3.7 It is NP-hard to find a maximum planar subgraph that contains a given
spanning tree. Likewise, an optimal solution to this problem approximates MPS with at
most 2/3.

3.4 MPS is NP-hard: A Simple Proof

Inspired by our proof that MPS-BFS is NP-hard, we can give a shorter proof for the hardness
of MPS itself. Liu and Geldmacher [LG79] gave a 2-step-reduction from Vertex Cover to a HC
restricted to triangle-free graphs and from that to MPS. We give a direct simple reduction from
general HC to MPS.

Theorem 3.8.3.8 MPS is NP-hard.

Proof. Let G = (V,E) be an instance for HC, n := |V |, and m := |E|. We construct an input
graph G′ for MPS by adding two nodes r, s and the edge set

EB :=
⋃

v∈V
(Bm+1

r,v ∪ Bm+1
v,s)

(cf. Figure 3.D(b)). Note that G′ contains 2 + n(2m+ 3) nodes and m+ 4n(m+ 1) edges. We
show that G has a Hamiltonian cycle if and only if G′ has a planar subgraph of size ξ := |EB|+n.

(If) Given a planar subgraph H of G′ with ξ edges. There are at most m − 1 edges of
G′ not in H since |E(G′)| −m < ξ. Thus, for each bundle in EB at least one 2-path is part

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 51

Algorithm 3.F: Cactus 3.FAlgorithm

Input: connected simple graph G = (V,E)
edge set S1 := ∅
while ∃ triangle T ⊆ E whose nodes are in 3 different components of (V, S1) do

S1 := S1 ∪ T
S2 := S1

while ∃ edge e ∈ E whose nodes are in different components of (V, S2) do
S2 := S2 ∪ {e}

return S2

of H. It follows that there can be at most n edges of E in H as H is planar. Consequently,
|E(H)| ≤ k − m + |E(G′)| where k ≤ n equals the number of edges of E in H. Assuming
k < n leads to |E(H)| < ξ, a contradiction. By planarity of H we observe that H[V] forms a
Hamiltonian cycle in G.

(Only if) Given a Hamiltonian cycle C in G. The graph H := G′[C ∪ EB] has ξ edges and is
planar. �

Consider an MPS instance G = (V,E). We can construct G′ by replacing every edge
in E with a path of length k := dp/3e. Now all cycles in G′ contain at least p nodes, and
OPT(G′) = OPT(G) + (k − 1)|E|. We conclude:

Corollary 3.9. 3.9MPS remains NP-hard for graphs with any given girth.

3.5 Algorithms Inspired by Cactus Structures

The (greedy) Cactus Algorithm, see Algorithm 3.F, for MPS was developed by Călinescu et al.
[Căl+98]. It first constructs a cactus subgraph S1 consisting of triangles joined at single nodes.
The resulting structure S2 achieves a tight approximation ratio of 7/18. When the first phase
of the algorithm is replaced to find a cactus structure of maximum cardinality (which requires
the use of a graphic matroid parity subalgorithm), the approximation ratio can be improved to
4/9. One may either search for an algorithm with a better approximation guarantee or for an
algorithm with an approximation ratio better than 7/18 that requires only simple operations (in
contrast to the matroid-based algorithm), possibly again based on a greedy scheme. Poranen
proposed two algorithms that greedily select triangles and conjectured approximation ratios of at
least 4/9 [Por08]. However, both conjectures were refuted by Fernandes et al. [FC07, Sect. 56.6].
We show that related, more general classes of algorithms are not suited to achieve the desired
approximation guarantee or have an approximation ratio of at most 1/2.

It is fairly natural to ask for a more sophisticated yet easily implementable greedy selection
of the triangles to build a cactus. We start with a close relative of the Cactus Algorithm.

Lemma 3.10. 3.10Let k > 2 and Γk be a cycle on k vertices vi with v1, v2, . . . , vk in order. Let
Λ(vi) := i mod 5 be the labels of the vertices. The interior of the cycle can be triangulated with
an edge set T such that for all edges uw ∈ T we have: Λ(u) 6= Λ(w).

Proof. If k ≤ 5, the labels of all vi are different. Thus, any triangulating edge set satisfies the
property.

Let now k > 7. Among the first seven nodes we define the edge set

T ′ := {v1v4, v2v4, v4v7, v5v7, v1v7}

52 Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem

v1 v2 v3 v4 v5 v6 v7 v8 · · · vk-1 vk

Λ = 1̄ 2̄ 3̄ 4̄ 5̄ 1̄ 2̄ 3̄ k-1 k̄

v′1 v′2 v8 · · · vk-1 vk

Λ = 1̄ 2̄ 3̄ k-1 k̄

Figur3.G e 3.G: (cf. Lemma 3.10) Collapsing the edges in T ′ to a single edge v′1v
′
2.

`0 `1 `2 `τ+3 `τ+4

u0 u1 u2 uτ+3 uτ+4. . .

. . .

. . .

Figur3.H e 3.H: (cf. Theorem 3.11) The graph Rτ .

where all its edges have endpoints with different labels, c.f. Figure 3.G. Note that for k = 8
the set T ′ is a triangulating edge set with the desired property. If k > 8 we collapse all edges
and nodes in T ′ to two new nodes v′1 and v′2 and a single edge v′1v

′
2, c.f. Figure 3.G. Because

Λ(v1) = 1 = Λ(v′1) and Λ(v7) = 2 = Λ(v′2), we can see the graph Γk with the collapsed set T ′

as a smaller instance of the same problem of size knew = kold − 5. On this smaller instance the
problem can now be solved recursively. The solution T is then obtained as the union of the T ′

sets in each recursion step.
Finally, for k = 6 the set T ′ \ {v4v7, v1v7} and for k = 7 the set T ′ \ {v1v7} have the desired

property. �

The greedy version of the Cactus Algorithm selects triangles and afterwards connects the
thereby arising cactus structures with single edges. We show in the next theorem that a 7/18
bound holds independently of the final selection of single edges.

Theorem 3.11.3.11 Let A be an algorithm that selects triangles without restrictions. Assume that
A selects a maximal set of triangles. Then, A has an approximation ratio of at most 7/18.

Proof. Let τ be divisible by 5 and Rτ := (Vτ , Eτ) be the graph

Vτ := {ui, `i : i = 0, 1, . . . , τ + 4}

Eτ :=
⋃τ+3

i=0
{uiui+1, `i`i+1, ui`i+1} ∪

⋃τ+4

i=0
{ui`i},

c.f. Figure 3.H. We add edges u2uτ+1, `0`τ+4 and triangulate the cycles u2u3 · · ·uτ+1u2 and
`0`1 · · · `τ+4`0 according to Lemma 3.10 obtaining R′τ . Consequently, R′τ contains only a single
non-triangular face of degree 9: u0u1u2uτ+1uτ+2uτ+3uτ+4`τ+4`0u0. Next, we add planarly into
each triangular face of R′τ a new node together with 3 edges to obtain the graph H. This adds
(2|Vτ | − 4)− (9− 2) = 4τ + 9 nodes, denoted by M . Thus, H is a planar graph that contains
6τ + 19 nodes and (3|V (H)| − 6)− (9− 3) = 18τ + 45 edges.

We extend H to H ′ by adding

∆1 :=
{
ui`i−2, ui`i+3, `i−2`i+3 | 2 ≤ i ≤ τ + 1

}
that resembles 5 node-disjoint chains of triangles each, see Figure 3.I for a visualization. Finally,
we construct the input graph G by joining H ′ with the K−5 : Let f0, . . . , f4 denote 5 distinct faces
of K−5 , and δ(f) the nodes incident to face f . We add

∆2 :=
{
`iv | 0 ≤ i ≤ 4, v ∈ δ(fi)

}
.

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 53

u0

`0

u1

`1

u2

`2

u3

`3

u4

`4

u5

`5

u6

`6

u7

`7

u8

`8

u9

`9

u10

`10

u11

`11

u12

`12

u13

`13

u14

`14

Figur 3.Ie 3.I: (cf. Theorem 3.11) Three (stroked, dotted and dashed) of the five chains of triangles introduced
with ∆1. For simplicity we show them only on Rτ for τ = 10 instead of H. Note that all triangles of a
single chain pairwise share a vertex and the chains itself are pair-wise node-disjoint.

To sum up, we have

G =
(
V (H) ∪ V (K−5), E(H) ∪∆1 ∪ E(K−5) ∪∆2

)
with 21τ + 69 edges.

The algorithm may start by picking S := ∆1 ∪∆2 ∪ E(K−5). Note that this results in five
chains of τ/5 triangles, each of which can be planarly embedded inside a distinct face of the
K−5 . We observe that E(G) \ S = E(H). Any edge in E(H[V (∆1)]) connects nodes in different
chains by Lemma 3.10. Consequently, adding any of these edges yields a K5 subdivision and thus
non-planarity. A similar observation holds for all 2-paths in the cut [M,V (∆1)]: Adding any
V (∆1)-M -V (∆1)-path also yields a non-planar graph. Thus, for any node in M that is adjacent
to three nodes of V (∆1) we can add at most a single edge. Note that the number of nodes in M
that are adjacent to less than three nodes of V (∆1) is 9. Consequently, any planar subgraph S′

containing S has at most

|E(G)| − 2(|M | − 9)− |E(H[V (∆1)])| = 21τ + 69− 2((4τ + 9)− 9)− (3(2τ + 5)− 6− 5)

= 7τ + 65

edges. We conclude that the approximation ratio of any algorithm that picks triangles in arbitrary
order is at most

lim
τ→∞

|E(S′)|
|E(H)| = lim

τ→∞
7τ + 65

18τ + 45
=

7

18
.

�

Remark. The input graph G in the above proof contains 6τ + 19 nodes and 21τ + 69 edges.
Thus, G has a skewness of at least 3τ + 18 ∈ Θ(|V |). The example by [Căl+98] proved the
tightness of the 7/18 approximation using a graph family with only constant skewness (a planar
graph). Planar worst-case instances can be treated in an additional preprocessing step by using
a linear time planarity test. Also the MPS of graphs with constant or bounded skewness µ can
be computed in polynomial-time using O(|E|µ)—which is constant—planarity tests. y

The following result is another example for a graph family with non-constant skewness that
shows the tightness of the 7/18 approximation. Note that it extends the example of [Căl+98]
and the arising graphs are very similar.

Lemma 3.12. 3.12Algorithm 3.F has an approximation ratio of at most 7/18 even when restricted
to graphs G = (V,E) with skewness Θ(|V |).

Proof. We base this proof on the worst-case instance by [Căl+98]. Consider any connected cactus
S consisting of p triangles. Note that |V (S)| = 2p+ 1. Denote with S′ a triangulated supergraph
of S on V (S). The number of faces in S′ equals 4p− 2. We construct S′′ from S′ by adding a
node into each face of S′ along with 3 new edges. Thus, S′′ is a planar triangulated graph on

54 Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem

(a)

v0
0

v1
0 v2

0

v0
1

v1
1 v2

1

v0
2

v1
2 v2

2

v0
3

v1
3 v2

3

(b)

t0s1

t2 s3

s0t1

s2 t3

(c) sx

tx sy

ty

Figur3.J e 3.J: (cf. Theorem 3.13) (a) The graph Hp for p = 4. (b) The outerplanar graph Xp on V (Hp).
(c) Inserting independent edges whose endpoints are non-adjacent between Vx and Vy in Xp.

6p− 1 nodes. The graph S′′ is the example constructed in [Căl+98]. To obtain the input graph
G, we add a single node v together with 4p− 2 new edges such that v is adjacent to all nodes
in V (S′′) \ V (S). Since G contains 6p nodes and 22p− 11 edges, it has a skewness of at least
4p− 5 ∈ Θ(|V |). Clearly, the number of triangles in G remains equal to the number of triangles
in S′′. Consequently, the algorithm may pick the cactus S together with a single edge for each
remaining node. Thus, the approximation ratio is bounded from above by

|E(S)|+ |V \ V (S)|
|E(S′′)| =

7p− 1

18p− 9
.

�

Now, we investigate algorithms that greedily select either edges or triangles in an “intuitively
smart” manner.

Definition (forbidden edge (set)). Given a graph G and a subgraph G′ ⊆ G, we say that
an edge e ∈ E(G) is forbidden in G′ if and only if G′ + e is non-planar. Similarly, we call an
edge set F ⊆ E(G) forbidden if and only if there is a forbidden edge f ∈ F . y

The algorithm that iteratively picks an edge (or triangle) that minimizes the number of
resulting forbidden edges (or triangles), is called Greedy Edge Selection (GES) (or Greedy Triangle
Selection (GTS), respectively).

Theorem 3.13.3.13 GES has a tight approximation ratio of 1/3.

Proof. Let p ≥ 4. Define Hp := (V,EH) with

V :=
{
vi` | ` ∈ [p], i ∈ [3]

}
EH :=

{
vi`v

i+1
` | ` ∈ [p], i ∈ [3]

}
∪
{
vi`−1v

i
`, v

i
`v
i+1
`−1 | 1 ≤ ` ≤ p− 1, i ∈ [3]

}
cf. Figure 3.J(a). We define Λ(vi`) := ` as the level of vi`. Note that Hp is a triangulation and 4-
colorable with the coloring φ(vi`) := (3`+i) mod 4. For any color c ∈ [4], let Vc := {v ∈ V | φ(v) =
c} be the c-colored node partition induced by φ. We denote the increasing order of Vc according
to Λ by πc. For each of the four colors, we define the (new) path Pc := {πciπci+1 | 1 ≤ i < |Vc|}.
The lowest and highest level node of a path Pc is denoted by sc and tc, respectively. We obtain
the graph Xp on the nodes V by

Xp :=
(
V, {t0s1, s1t2, t2s3, s3t0, s0t3, t1s2} ∪

⋃
c∈[4]

E(Pc)
)

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 55

(a)

Hp D
πci

πci+1

πci+2

σci

σci+1

(b)

t0s1

t2 s3

s0t1

s2 t3

ab

. .
.. . .

. .
. . . .

t0s1

t2 s3

s0t1

s2 t3

Figur 3.Ke 3.K: (cf. Theorem 3.14) (a) Schematic structure of G′ showing only some nodes of color c.
(b) The outerplanar graph X ′p.

adding six edges to the paths Pc, cf. Figure 3.J(b).
Consider the graph G := Hp ∪ Xp (over the common node set V) as our input. The

triangulation Hp is an MPS of G. The graph Xp is outerplanar. Thus, we can add any single
edge planarly to Xp, and Xp can arise during GES since none of its edges was forbidding any
other edges. By showing that we can only add a constant number of edges to Xp while preserving
planarity, we bound the approximation ratio by

lim
p→∞

|E(Xp)|+ const

|E(Hp)|
=

1

3
.

We can ignore all edges incident to nodes {sc, tc | c ∈ [4]}: this is a constant number of
edges since we have bounded degree (independent of p). Given two colors x, y, there are at
most two faces in any embedding of Xp that have Px and Py on their boundary. Traversing any
such face will visit the nodes along both paths in the same order (either sx → tx and sy → ty;
or tx → sx and ty → sy). Let Exy ⊆ (Vx × Vy) ∩ EH be an arbitrary set of independent edges
whose endpoints are non-adjacent in Xp. The orderings πx and πy induce two orderings of Exy.
By construction of Hp we have |Λ(v) − Λ(w)| ≤ 1 for all vw ∈ EH . Hence, we observe that
the above two orderings of Exy are in fact identical. It follows that we can insert at most one
edge of Exy into each of the at most two suitable faces of Xp, cf. Figure 3.J(c). The number of
color pairs is constant. Thus, for any color pair (x, y) and suitable face, the insertable edges
E′xy ⊆ (Vx × Vy) ∩ EH need to be either adjacent, or incident to adjacent nodes. Since G has
bounded degree, we can only add a constant number of edges to Xp. �

Theorem 3.14. 3.14Any algorithm that selects the edges picked by GTS has an approximation
ratio of at most 7/18.

Remark. Note the difference between this result and Theorem 3.11: In Theorem 3.11 we
considered algorithms that do not apply any restriction on the choice of the selected triangles.
The theorem above is about algorithms that use a greedy strategy with respect to the thereby
arising forbidden triangles. y

Proof. Let G be the graph of the proof of Theorem 3.13 for an arbitrary but fixed p ≥ 5, and
np := |V (G)| = 3p. Again, we speak of the paths Pc for the colors c ∈ [4], and the outerplanar
subgraph Xp of G. Our initial argument is based on the same principle as before. Coarsely
speaking, we replace the edges of the paths Pc by new triangles, preserve outerplanarity, and
extend Hp by a similar structure on the newly inserted nodes:

56 Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem

Algorithm 3.L: Dense3.L Subgraph Selection (DSS)

Input: parameter k ∈ N≥3, connected simple graph G = (V,E)
edge set S := ∅
while S is not maximal planar do

Find a planar subgraph Q with up to k nodes W such that
(i) S[W] $ E(Q),
(ii) S ∪ E(Q) is planar,
(iii) Q has maximum density among all subgraphs that satisfy (i) and (ii), and
(iv) possibly further restrictions (see text).
S := S ∪ E(Q)

return S

Let D be a copy of Hp−1 where we delete the node v2
p−2. Note that D is triangulated with

the exception of one face of degree 5. As in the proof above, this graph is 4-colorable which
induces the node partitions Dc := Vc(D) for c ∈ [4]. D can be seen as a copy of Hp where one
node of each color (v0

p−1, v
1
p−1, v

2
p−1, v

2
p−2) is removed. We keep the notation of the ordering of

nodes Vc in Xp by πc and denote the analogous ordering of the nodes in the newly introduced
partitions Dc by σc. Let

X ′p :=
(
V (Xp) ∪ V (D) ∪ {a, b}, E(Xp) ∪ E4 ∪ {s1s3, s0a, at3, t1b, bs2}

)
with E4 := {πciσci , σciπci+1 | c ∈ [4], πciπ

c
i+1 ∈ Pc}, see Figure 3.K. That is, E4 consists of a

level-monotone Hamiltonian path for each color class.
Let

G′ :=
(
V (X ′p), E(X ′p) ∪ E(Hp) ∪ E(D)

)
.

The graph J := Hp ∪D is a planar subgraph of G′. Every edge in X ′p is part of a triangle and
the graph remains outerplanar. Thus, we can add any single triangle planarly to X ′p, and X ′p
could arise during GTS on G′. Analogous to the proof for Theorem 3.13, we can only add a
constant number of edges to X ′p while preserving planarity.

Let FJ denote the set of triangular faces in J . We obtain the graph G′′ from G′ by inserting
new nodes vf of degree 3 for all f ∈ FJ , connecting vf with the nodes on the boundary of f . Let
L := {vf | f ∈ FJ} denote the newly inserted nodes and EL the incident edges. Considering G′′ as
the input for GTS, similar to above, the number of edges that we can add to X ′p while preserving
planarity is bounded by |L| plus a constant: Any edge in EL is part of a 2-path u1-w-u2 where
ui ∈ V (G′), φ(u1) 6= φ(u2), and w ∈ L. On the other hand, J ∪ (L,EL) remains planar. We
conclude that the approximation ratio is at most

lim
p→∞

|E(X ′p)|+ |L|+ const

|E(J)|+ |EL|
= lim

p→∞
(3np + const) + (4np + const) + const

(6np + const) + (12np + const)
=

7

18
.

�

Similar to any DFS- and BFS-based algorithm, it remains NP-hard to determine a maximum
set of edges that can be added planarly to a selected set of triangles. We will show a more general
result in Theorem 3.16.

We investigate the selection of dense subgraphs, which is a natural generalization of triangle-
based algorithms such as GTS. Given an edge set S and a node set W , we define S[W] as the
edges of S that connect nodes of W .

We denote Algorithm 3.L by DSS. In its most general form (DSS-U) we do not pose any
further restrictions (iv) on the selection of dense subgraphs: they may overlap arbitrarily. A
restricted version of this algorithm, called DSS-D, requires the subgraphs Q in the loop to be

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 57

node-disjoint to the current structure S. Similarly, we denote by DSS-C the algorithm with the
restriction that the nodes of Q are pairwise disconnected in the current structure S.

Theorem 3.15. 3.15Consider any MPS instance G. It remains NP-hard to find a maximum planar
subgraph of G under the restriction that it contains the solution S of DSS-D.

Proof. Given an arbitrary triangle-free graphG = (V,E), we constructG′ by adding k−1 nodes Vv
for each v ∈ V , such that Gv := G′[{v} ∪ Vv] is triangulated. Let S :=

⋃
v∈V E(Gv). Note that

each Gv is a graph on k nodes with maximal density and that any other subgraph of G′ has
strictly lower density. Consequently, the algorithm selects each Gv to S. Thus, any subgraph H ′

of G′ that contains S corresponds to a subgraph H of G with |E(H ′)| = |E(H)| + n(3k − 6).
MPS is NP-hard on triangle-free graphs, see Corollary 3.9. �

Theorem 3.16. 3.16Consider any MPS instance G. It remains NP-hard to find a maximum planar
subgraph of G under the restriction that it contains the solution S of DSS-C.

Proof. Consider a graph G together with a spanning tree T . We know from Corollary 3.7 that it
is NP-hard to find a maximum set of edges that can be added planarly to T . Replacing each
edge of T with a triangulated subgraph on k nodes in G yields an instance where Algorithm 3.L
can select exactly the structures corresponding to T . Thus, finding a maximum set of edges that
can be added to the selected structure remains NP-hard, independently of k. �

Note that Theorem 3.16 for k = 3 is the above claimed hardness result for algorithms based
on triangle selection.

Theorem 3.17. 3.17For any fixed k ≥ 3, DSS-U has an approximation ratio of at most 1/2. For
any fixed k ≥ 7 any variant of DSS that poses arbitrary restrictions (iv) on the cut of Q with S
has an approximation ratio of at most 1/2.

Proof. First assume that k ≥ 7. Let F := {f0, . . . , f3} denote the set of faces of a K4, δi the set
of nodes incident to face fi and κ := k − 7. We define F ′ := F \ {f0} and {b, t, u0} =: δ0. We
construct G = (V,E) with

V := V (K4) ∪ {wi | fi ∈ F ′} ∪ {ui+1 | i ∈ [κ]},
E := E(K4) ∪ EW ∪ EU ,

EW := {wiv | fi ∈ F ′, v ∈ δi},
EU :=

⋃κ

i=1
{bui, uit, uiui−1}.

Note that G is triangulated, planar, and contains exactly k nodes. Furthermore, we cannot
connect any nodes wi, wj , i 6= j, while preserving planarity. We define the input graph G′ as
(V ∪L,E ∪EL), where L := {s1, . . . , s`} and EL :=

⋃
i∈[`]{siw1, siw2, siw3} (cf. Figure 3.M), for

some ` ≥ 7.
The algorithm may pick a graph Q that is the entire triangulated subgraph G in its first

iteration, since G contains exactly k nodes. Thus, nodes in L can only be added with a single
edge and we therefore pick at most 1/3 of EL. On the other hand, a planar subgraph H ⊆ G
can be obtained by picking every edge in E except for the edge of K4 incident to f1 and f2.
Then, each node in L can be connected with w1 and w2 (picking 2/3 of EL), giving H ′ ⊆ G′.
We conclude that the approximation ratio is at most

lim
`→∞

|Q|+ `

|H ′| = lim
`→∞

|E|+ `

|E| − 1 + 2`
=

1

2
.

For k < 7, we construct the graph G as for k = 7 where DSS-U may still return a subgraph
containing G, independently of k and `. �

58 Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem

w1

w2

w3

t

u0

b

Figur3.M e 3.M: (cf. Theorem 3.17) Schematic drawing of the input graph for ` = 6 and k = 4. The K4

subgraph is highlighted by thick edges. Dotted edges are not included in H2.

3.6 Algorithms Based on Decomposition

This section collects some notes on algorithmic ideas based on graph decompositions. It is known
[ALS91, Theorem 3.5] that MPS can be expressed in extended monadic second order logic. This
implies the existence of a linear-time algorithm [ALS91, Theorem 5.6] for solving MPS on graphs
with bounded tree-width. In the text below we present some insights regarding the cut- and
path-width.

Note that the focus in this section is on the usage of decompositions that answer questions
naturally arising when constructing approximation algorithms, such as How can we bound the
number of edges between these sets of nodes. The presented results show examples of such
usecases.

Definition (numbering, cut-width). Given a graph G = (V,E), |V | = n, a numbering of G
is a bijective mapping π : V → [n]. The cut-width of π is

max
p∈[n−1]

∣∣{uv ∈ E | π(u) ≤ p < π(v)}
∣∣.

The cut-width cw(G) of G is the minimum cut-width over all numberings. y

See [KS93] for details. Note that the cut-width is bounded from below by the path-width
[Bod86, Theorem 3.10] that is bounded from below by the tree-width since each path decomposi-
tion is a tree decomposition.

Lemma 3.18.3.18 Let G be a connected graph and π be a numbering with cut-width c := cw(G).
For each ε > 0, there is a (1−ε)-approximation algorithm for MPS with run-time O(|V | · f(c/ε)),
where f is a computable function independent of the instance G.

Proof. Let H be a maximum planar subgraph of G, m̂ := |E(H)|, b :=
⌈
|V |ε/c

⌉
and

Bi := {v | ic/ε ≤ π(v) < (i+ 1)c/ε}

be a partition of the ordered vertices into b bags. W.l.o.g. m̂ ≥ |V |. For each Bi, we compute a
MPS (Bi, Ei) in O(f(c/ε)) time. Let M be the union of E1, . . . , Eb. Any cut along π contains at
most c edges. Thus, the union of all cuts between adjacent Bi’s contains at most c(b− 1) ≤ |V |ε
edges. Since we find optimal solutions on all Bi, we obtain a planar subgraph of G that contains
at least m̂− |V |ε edges. We obtain a (1− ε)-approximation using M since

|M |
m̂
≥ m̂− |V |ε

m̂
= 1− |V |ε

m̂
≥ 1− ε. �

We now focus on the path-width and try to find characteristica of maximal planar subgraphs
in graphs with bounded path-width.

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 59

u

w

v0 v1 v2 v`· · ·

Figur 3.Ne 3.N: The planar triangulated graph G = ({u,w, v0, v1, . . . , v`}, E) with path-width three (bags
Bi := {u,w, vi−1, vi}).

Definition (path-width, path decomposition). [Kin92; RS83] Given a graph G = (V,E),
|V | = n, and a numbering π of G. Define

Vπ(i) := {u ∈ V : π(u) ≤ i and there is some v ∈ V such that uv ∈ E and π(v) > i}.

The vertex separation number of π is maxp∈[n−1] |Vπ(i)|. The path-width pw(G) of G is the
minimum vertex separation number over all the numberings. A path decomposition is a tree
decomposition (B, T) where the underlying tree T is a path. y

Graphs with path-width k ≤ 2 have at most 2n− 3 edges, which follows directly from the
definition. Thus, they can be 1/2-approximated using spanning trees.

However, there are planar triangulated graphs with path-width k = 3. Consider the graphG :=
(V,E) shown in Figure 3.N on 3 + ` nodes with V := {u,w, v0, . . . , v`}, and

E := {uw, v0u, v0w} ∪ {vivi−1, viu, viw | 1 ≤ i ≤ `}.

It is easy to see that G is triangulated and that a path decomposition of G of width 3 is given by
Bi := {u,w, vi−1, vi} for 1 ≤ i ≤ `.

3.7 Alternative Proof for the Cactus Algorithm

In this section we present an alternative proof for the result that the Cactus Algorithm has
an approximation ratio of 7/18. We developed this proof because we were unable to apply the
existing one by Călinescu et al. to new classes of algorithms. Our goal was to use the new method
to prove that other greedy approximation algorithms achieve a better approximation ratio.
Unfortunately, we did not find a better algorithm. Nevertheless, we hope that the underlying
ideas are useful in the future to build proofs for new approximation algorithms on them.

Definition (extended topological embedding). [Cha+15; JS09] Let G be a planar graph.
We define a extended topological embedding as follows: We specify a planar embedding for each
connected component which determines sets of non-outer faces. For each connected component
of G we specify a containing face, which may be a non-outer face of some other component or
the unique outer face f∞. Cycles of containment are forbidden.1 A face f = {w1, . . . , wp} in a
topological embedding has several facial walks wi along its boundary. The size |w| of a facial
walk w is defined as the number of nodes of w, where we count node repetitions. The size |f | of
a face is defined as |f | := ∑w∈f |w|. y

Remark. The number of walks in a face equals the number of connected components incident to
the face. y

Example. Consider the graph K4 ∪K−4 . The figures 3.O(a) and 3.O(b) show two topological
embeddings of U with faces that consist of more than a single facial walk. y

60 Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem

(a) (b)
f1

f2

f3

f4

f5

f∞

f1
f2

f3

f4

f5

f∞

Figur3.O e 3.O: (a) A topological embedding of the union U := K4 ∪K−4 where the containing face of both
components is the outer face f∞. Note that f∞ consists of two facial walks. (b) A topological embedding
of U where the containing face of the K−4 -component is the non-outer face f4 of the K4-component. Here,
f∞ is only a single facial walk but f4 consists of two facial walks.

f expf

expf

Figur3.P e 3.P: Top left: A face f in a topological embedding of a graph. Top middle: The expansion expf
of f drawn similar to the initial embedding. Top right: A holey triangulation Hf of f . Bottom left: The
expansion expf of f drawn as described in the definition. Bottom right: The same holey triangulation Hf

drawn consistent with the definition.

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 61

Definition (expansion). A given face f = {w1, . . . , wp} can be identified with the outer region
of p cycles with lengths |w1|, . . . , |wp|, respectively, embedded side by side in the plane. We call
this region the expansion expf of f . y

Definition (holey triangulation). Let f be a given face. A triangulation of expf is called
holey triangulation (HT) of f . y

Example. Consider the graph in Figure 3.P with the given topological embedding. The figure
visualizes the expansion expf of the face f and a possible holey triangulation. y

Lemma 3.19. 3.19A HT of a face f = {w1, . . . , wp} adds τ(f) := |f |+ 3p− 6 edges.

Proof. A triangulated graph on |f | nodes has 3|f | − 6 edges. Discounting the
∑

w∈f (|w| − 3) =
|f | − 3p edges in the interior of the cycles, we obtain

(3|f | − 6)− |f | − (|f | − 3p) = |f |+ 3p− 6

new edges. �

Theorem 3.20. 3.20The approximation ratio of Algorithm 3.F is at least 7/18.

Proof. Sketch of the proof: Let H = (V,EH) denote a maximum planar subgraph of G. The
algorithmic solution S1 allows us to consider two classes of faces of a certain subgraph H[C]
of H. To reconstruct H from H[C], we insert the remaining nodes—with all incident edges in
H—while bounding the maximum number of reconstructed edges. This allows us to bound the
total number of edges in H from above which we will relate to the number of edges in S2.

Let C1, . . . , Ck ⊆ V denote the nodes of the connected components of G[S1], C :=
⋃k
i=1Ci,

and L := V \ C. We say that a face f of H[C] is free if and only if for each cycle w ∈ f there is
a component K of G[S1] such that all nodes of w are in K.

Claim 3.21. 3.21Given a face f = {w1, . . . , wp} in H[C], we reconstruct all `f nodes from L that
are within f in H. The number rf of reconstructed edges is bounded from above via the inequality

rf ≤ 2`f + τ(f) + 1free(f).

Here, 1free(f) = 1 if f is free and 0 otherwise.

We will prove this claim later. Now we use the claim to continue with our main proof.
We define δ ≥ 0 such that |E(H[C])| = 3|C| − 6− δ. We denote the number of free faces that

contain nodes of L by φ. Note that |L| ≥ φ. We can bound the number r of reconstructed edges
when reconstructing all nodes from L by

r =
∑

f : `f>0
rf ≤ φ+

∑
f : `f>0

2`f + τ(f) ≤ φ+ 2|L|+
∑

f
τ(f) ≤ φ+ 2|L|+ δ

where the last inequality follows from Lemma 3.19:
∑

f τ(f) is bounded by δ, the number of
missing edges for a triangulation of H[C].

We can bound the total number of edges in H by

|EH | ≤ (3|C| − 6− δ) + r ≤ 3|C|+ 2|L|+ φ− 6.

1If the containing face of a component C1 is a non-outer face of a component C2 whose containing face is
non-outer face of C1, we get a cycle.

62 Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem

Note that the number of edges in S2 is 3
2 |C| − k/2 + |L| − 1, since S2 resembles a spanning tree

together with the triangles in the components Ci of S1 and each component contains 3
2 |Ci| − 3

2
edges in the algorithmic solution. It is now easy to see that |S2|/|EH | ≥ 7/18:

Assuming |S2|/|EH | < 7/18 leads to 6|C| − 9k + 4|L|+ 24 < 7φ. Clearly, the number of free
faces is at most

2|C| − 4k =
∑k

i=1
(2|Ci| − 4)

if all H[Ci] would be triangulated. Therefore, φ ≤ 2|C|−4k. It follows that 3φ+3k+4|L|+24 < 7φ,
which results in 4(|L| − φ) < −3k − 24. Thus, |L| < φ, a contradiction. �

Proof (of Claim 3.21). The number of edges inserted in expf of f while reconstructing the `f
nodes is an upper bound on the number of reconstructed edges in f itself. We say that a triangle
is forbidden if and only if all of its nodes lie in different components of H[C]. The algorithm would
have found such triangles. Consequently, when inserting the `f nodes, no forbidden triangles can
be created. We will now consider expf that we insert `f nodes into. Assuming a triangulation ∆
of this region, we bound the number of forbidden triangles in ∆ from below. This yields an
upper bound on the number of reconstructed edges in f .

A triangulated graph on |f |+ `f nodes has 3(|f |+ `f)− 6 edges and 2(|f |+ `f)− 4 triangles.
The expansion expf itself contains |f | edges. The interior triangulations of the cycles of lengths
|w1|, . . . , |wp| have overall ∑p

i=1
(|wi| − 3) = |f | − 3p

edges. There remain

3(|f |+ `f)− 6− |f | − (|f | − 3p) = |f |+ 3`f − 6 + 3p = 3`f + τ(f)

edges in ∆. These interior triangulations together with expf induce∑p

i=1
(|wi| − 2) = |f | − 2p

triangles. With each non-forbidden triangle in ∆ we can associate a unique edge of expf where
both incident nodes lie in the same component of H[C]. Thus, there are at most |f | allowed
triangles in a free face. A non-free face has at least two edges whose incident nodes are in different
components. Such an edge cannot be part of a triangle with a node of L because this would be a
forbidden triangle. Consequently, at least

2(|f |+ `f)− 4− (|f | − 2p)− (|f | − 2 + 2 · 1free(f)) = 2`f − 2 + 2p− 2 · 1free(f)

triangles are forbidden. Note that it is possible to choose ∆ such that all edges of H within f
are in ∆. Any edge in ∆ that we do not reconstruct, destroys at most 2 forbidden triangles.

Combining the results above we conclude

rf ≤ (3`f + τ(f))− 1
2(2`f − 2 + 2p− 2 · 1free(f)) ≤ 2`f + τ(f) + 1free(f). �

3.8 Summary and Conclusion

Since 1998 the best known approximation algorithm [Căl+98] for MPS is an almost non-
implementable enhanced version of a greedy algorithm searching for cactus structures. Our initial
goal was to develop an approximation algorithm that breaks the even today holding bound of
4/9. During our non-successful attempts we gained more and more knowledge about limits of
existing algorithms and possible generalizations or new variants.

Chapter 3. Limits of Greedy Apx. Algorithms for the Maximum Planar Subgraph Problem 63

We established alternative—and in most cases shorter—proofs for the approximation ratio
by maximal planar subgraphs, the hardness of MPS itself and for the 7/18 bound of the greedy
version of the Cactus Algorithm.

Based on state-of-the-art planarity testing algorithm we introduced the problems MPS-DFS
and MPS-BFS. We were able to show the hardness of the corresponding new problems, too.
Furthermore, a 2/3 bound for approximation ratio for these class of algorithms was carved out.

Moreover, we showed the independence of the final single edge selection step of any algorithm
based on triangle selection without restrictions. The transition from triangle selection to the
selection of larger dense subgraphs results in a bound of 1/2 for the approximation ratio of greedy
dense subgraph selection algorithms.

We were not able to break the 4/9 barrier with a new approximation algorithm. This remains
as an open task for future work. Even the new algorithm by Chalermsook and Schmid [CS17] does
not achieve 4/9 as a lower bound. But note that the methods used to show the approximation
ratio of 13/33 of their Diamond Selection Algorithm seem to contain gaps that can be used to
prove even better lower bounds. So far, no worst-case examples for the Diamond selection are
known.

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 65

Chapter 4

Exact Algorithms for the Maximum Planar
Subgraph Problem

In this chapter we consider exact algorithms for the Maximum Planar Subgraph problem. The
aim of our work is to study formulations based on different planarity criteria. Examples for other
approaches are specialized branch-and-cut techniques as discussed in Jünger and Mutzel [JM96].

As highlighted in Chapter 1 there are various applications for the MPS problem in graph
drawing, facility layout, and the layout of electronic circuits.

We give a non-complete list of 14 planarity criteria where we picked four to build exact
algorithms on them: Additional Minors for not apex graphs, Total Orders and the Dushnik-Miller
dimension, Theta Graphs, and Facial Walks.

In most cases, we only discuss ideas either for ILP or PBS formulations. But most of the
ideas can be expressed in ILP and PBS formulation. For the sake of brevity, we do not give all
formulations explicitly.

We evaluate the overall practicality of our formulations in experiments on the Rome, North,
SteinLib and Expander instances. None of the presented approaches are favorable compared to
the standard method using Kuratowski subdivisions.

4.1 A Summary of Known Planarity Criteria

Besides the famous K5-K3,3-subdivision and K5-K3,3-minor criteria by Kuratowski [Kur30] (see
Section 4.2 (p. 69) for details) and Wagner [Wag37] there are many more criteria that are more
or less useful for ILP/SAT-based exact MPS algorithms. We give a (non-complete) list1 of
criteria that we used to build exact algorithms or explain why we refrained from using the
characterization.

1. Archdeacon and Širáň [AŠ98]: Characterizing Planarity Using Theta Graphs:

Original Abstract: A theta graph is a homeomorph of K2,3. In an embedded planar graph the
local rotation at one degree-three vertex of a theta graph determines the local rotation at the
other degree-three vertex. Using this observation, we give a characterization of planar graphs in
terms of balance in an associated signed graph whose vertices are K1,3 subgraphs and whose edges
correspond to theta graphs.

See Section 4.5 (p. 78) for details.

2. Došen and Petrić [DP15]: A planarity criterion for graphs:

1The bibliography of Little and Sanjith [LS10] Another characterisation of planar graphs and the introduction
of Thomassen [Tho80] Planarity and Duality of Finite and Infinite Graphs are the primary sources of this list.

66 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

MathSciNet Review by R. Bruce Richter: Kuratowski famously characterized planar graphs in
1930 as having no subdivision of either K3,3 or K5. Since then, there have been many other
characterizations of planar graphs. This article presents a characterization in terms of the cyclic
ordering of each of the cocycles (these are the minimal edge-cuts and are now usually called “bonds”).
The cyclic ordering is, of course, determined by a planar embedding. Graph-theoretically, suppose
e1, e2, e3, e4 is a cyclic ordering of 4 of the edges in a (possibly larger) cocycle. This ordering is
disallowed if, on at least one side of the cocycle, there are disjoint paths, one joining the ends of e1
and e3, the other joining the ends of e2 and e4. The graph G is planar if and only if every cocycle
has a cyclic order with no disallowed cyclic subsequence of length 4. The proof is a straightforward
application of Kuratowski’s Theorem.

The presented criterion is more complex than the criterion by [AŠ98]. We therefore refrain
from using it for an exact algorithm.

3. Lipton et al. [Lip+16]: Six variations on a theme: almost planar graphs:

Original Abstract: A graph is apex if it can be made planar by deleting a vertex, that is, ∃v such
that G− v is planar. We define the related notions of edge apex, ∃e such that G− e is planar, and
contraction apex, ∃e such that G/e is planar, as well as the analogues with a universal quantifier:
∀v, G− v planar; ∀e, G− e planar; and ∀e, G/e planar. The Graph Minor Theorem of Robertson
and Seymour ensures that each of these six gives rise to a finite set of obstruction graphs. For the
three definitions with universal quantifiers we determine this set. For the remaining properties,
apex, edge apex, and contraction apex, we show there are at least 36, 55, and 82 obstruction graphs
respectively. We give two similar approaches to almost nonplanar (∃e, G+ e is nonplanar and ∀e,
G+ e is nonplanar) and determine the corresponding minor minimal graphs.

See Section 4.3 (p. 73) for details.

4. Colin de Verdière [Col93]: On a new graph invariant and a criterion for planarity :

MathSciNet Review by Arthur T. White: Let G be a finite connected graph of order v. Let MG

denote the set of symmetric real v × v matrices A = (aij) satisfying (i) aij < 0 if {i, j} ∈ E(G);
and (ii) aij = 0 if i 6= j and {i, j} /∈ E(G). Then µ(G) is defined to be the greatest integer n0 for
which there exists A0 ∈MG for which the second eigenvalue is of multiplicity n0 and satisfies the
strong Arnol’d hypothesis [V. I. Arnol’d, Funktsional. Anal. i Prilozhen. 6 (1972), no. 2, 12–20].
The monotonicity of µ with respect to operations of deletion and contraction is studied. Among the
theorems proved are the following: (1) G is planar if and only if µ(G) ≤ 3; (2) G is outerplanar if
and only if µ(G) ≤ 2. It is conjectured that always µ(G) ≥ χ(G)− 1; this, in conjunction with (1),
would immediately give the four-color theorem.

The algebraic nature of the presented property prevents us from considering this as a base
for an exact algorithm.

5. Jaeger [Jae79]: Interval matroids and graphs:

Original Abstract: A base of the cycle space of a binary matroid M on E is said to be convex if
its elements can be totally ordered in such a way that for every e ∈ E the set of elements of the
base containing e is an interval. We show that a binary matroid is cographic iff it has a convex
base of cycles; equivalently, graphic matroids can be represented as “interval matroids” (matroids
associated in a natural way to interval systems). As a consequence, we obtain characterizations
of planar graphs and cubic cyclically-4-edge-connected planar graphs in terms of convex bases of
cycles.

The presented complex criterion refrains us from using it for an exact algorithm.

6. Tutte [Tut63]: How to draw a graph:

Summary by Thomassen [Tho80]: “a 3-connected graph is planar if and only if every edge
is contained in precisely two induced non-separating cycles”

The MPS of a given graphs does not need to be 3-connected, thus we cannot use this
criterion.

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 67

7. Schnyder [Sch89]: Planar Graphs and Poset Dimension:

Original Abstract: We view the incidence relation of a graph G = (V,E) as an order relation on
its vertices and edges, i.e. a <G b if and only if a is a vertex and b is an edge incident on a. This
leads to the definition of the order-dimension of G as the minimum number of total orders on
V ∪ E whose intersection is <G. Our main result is the characterization of planar graphs as the
graphs whose order-dimension does not exceed three. Strong versions of several known properties
of planar graphs are implied by this characterization. These properties include: each planar graph
has arboricity at most three and each planar graph has a plane embedding whose edges are straight
line segments. A nice feature of this embedding is that the coordinates of the vertices have a purely
combinatorial meaning.

See Section 4.4 (p. 74) for details.

8. Fournier [Fou74]: Une Relation de Séparation entre Cocircuits d’un Matroide:

MathSciNet Review by W. Dorfler: Let M be a matroid on the set E, and let T,A be subsets of
E. Then T is said to separate A in M if A meets at least two components of M × (E − T). Here
M × B has as circuits those circuits of M that are contained in B ⊂ E. For the bond-matroid
M of a graph G, the fact that a cocircuit does not separate E or the union of two cocircuits can
be translated into graph-theoretic language. Main result: A matroid is graphical if and only if at
least one of any three cocircuits with a nonvoid intersection separates the union of the other two
cocircuits. The proof of sufficiency depends on Tutte’s characterization of binary and graphical
matroids by excluded minors. This result applies to graphs and yields an interesting planarity
criterion for simple graphs. Similar characterizations hold for cographic, planar and trivial matroids.
Theorem: For a binary matroid to be unimodular it is sufficient that at least one of any 4 circuits
or 4 cocircuits with a nonvoid intersection separate the union of the remaining ones. Theorem: A
matroid is binary if and only if given 3 circuits C1, C2, C3 with nonvoid intersection for at least one
of them, say C1, then C2 − C1 6= C3 − C1.

The criterion itself is given in Corollaire 2.2: Un graphe simple est planaire si et seulement
si quels que soient 3 cycles élémentaires ayant une arête commune et tels qu’aucune arête
de l’un n’est une corde d’un autre, l’un au moins de ces 3 cycles sépare les deux autres.

A translation is [Tho80, Theorem 4.8]: A simple graph is non-planar if and only if it
contains three cycles such that

• they all have an edge in common and

• no edge of one of the cycles is a chord in one of the other cycles, and

• whenever we contract the edge set of one of the cycles, then those edges of the other
two cycles which are not contracted belong to the same block of the resulting graph.

Due to the geometric nature of the criterion we refrain from using it for an exact algorithm.

9. Tutte [Tut59]: Matroids and graphs:

MathSciNet Review by J. Isbell: “In the original paper on matroids, Hassler Whitney pointed out
[Amer. J. Math. 57 (1935), 507–533] that the circuits of any finite graph G define a matroid. We
call this the circuit-matroid and its dual the bond-matroid of G. In the present paper we determine
a necessary and sufficient condition, in terms of matroid structure, for a given matroid M to be
graphic (cographic), that is the bond-matroid (circuit-matroid) of some finite graph. The condition
is that M shall be regular and shall not contain, in a sense to be explained, the circuit-matroid
(bond-matroid) of a Kuratowski graph.” (Author’s introduction.) The paper begins with the
definition and basic properties of dual matroids. Using much of the theory previously developed by
the author [see the article reviewed above] he goes on to define minors of matroids. The minors
of a graphic matroid apparently correspond one-one with the subgraphs; at any rate, “contain”
in the main theorem means “contain as a minor”. The author proves (after the main theorem)
that if M0 is a connected matroid of subsets of a set A and no two points of A lie in exactly the
same members of M0, then a matroid M contains M0 as a minor if and only if the configuration

68 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

associated with M0 can be embedded by a dimension-preserving semi-lattice isomorphism in the
configuration associated with M .

Definition (H-component, overlap graph). Let H be a subgraph of a graph G. An
H-component of G is either

• an edge in E(G) \ E(H) together with its ends joining two vertices of H or

• a connected component of G \ V (H) together with all edges and their ends joining
this component to H.

The overlap graph of H in G is defined as the graph whose vertices are the H-components
of G such that two vertices are adjacent if and only if the corresponding H-components
overlap. y

Note that this definition of an overlap graph is not the same as in Section 3.3.

Summary by Thomassen [Tho80, Theorem 4.2(b)]: A graph is planar if and only if it
contains a cycle whose overlap graph is non-bipartite.

Due to the complexity of the criterion we refrain from using it for an exact algorithm.

In the beginning of our work on exact algorithms for the MPS problem we also considered the
following criteria. Due to time constraints we did not examine them in detail.

10. Keir and Richter [KR96]: Walks through every edge exactly twice. II :

Original Abstract: In this paper we develop a theory of sets of walks traversing every edge twice.
Archdeacon, Bonnington, and Little proved that a graph G is planar if and only if there is a set of
closed walks W in G travsersing every edge exactly twice such that several sets of edges derived
from W are all cocycles. One consequence of the current work is a simple proof of the ABL theorem.

Note that this criterion is a generalization of [ABL95] by Archdeacon et al.

11. Williamson [Wil93]: Canonical forms for cycles in bridge graphs:

Original Abstract: Let G = (V,E) be a biconnected graph and let C be a cycle in G. The subgraphs
of G identified with the biconnected components of the contraction of C in G are called the bridges
of C. Associated with the set of bridges of a cycle C is an auxiliary graphical structure GC called
a bridge graph or an overlap graph. Such auxiliary graphs have provided important insights in
classical graph theory, algorithmic graph theory, and complexity theory. In this paper, we use
techniques from algorithmic combinatorics and complexity theory to derive canonical forms for
cycles in bridge graphs. These canonical forms clarify the relationship between cycles in bridge
graphs, the structure of the underlying graph G, and lexicographic order relations on the vertices
of attachment of bridges of a cycle. The first canonical form deals with the structure of induced
bridge graph cycles of length greater than three. Cycles of length three in bridge graphs are studied
from a different point of view, namely that of the characterization of minimal elements in certain
related posets: ordered bridge three-cycles (10 minimal elements), bridge three-cycles (5 minimal
elements), bridge deletion three-cycles (infinite number, 7 classes), minor order (K5,K3,3), chordal
bridge three-cycles (13 minimal elements), contraction poset (5 minimal elements), cycle-minor
poset (infinite number, 14 classes). These results, each giving a different insight into the structure
of bridge three-cycles, follow as corollaries from the characterization of the 10 minimal elements of
the ordered bridge three-cycle poset. This characterization is constructive and may be regarded
as an extension of the classical Kuratowski theorem, which follows as a corollary. Algorithms are
described for constructing these various minimal elements in time O(|E|) or O(|V |), depending on
the case. The first canonical form gives a constructive proof of the result that a graph is nonplanar
if and only if it has a cycle C whose bridge graph GC (alternatively, skew bridge graph) has a
three-cycle. An algorithm is described that constructs this three-cycle in time O(|E|). This is best
possible.

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 69

12. Fraysseix and Rosenstiehl [FR85]: A characterization of planar graphs by Trémaux orders:

MathSciNet Review by Torrence D. Parsons: This paper gives a new characterization of planar
graphs. Let G be a finite connected graph without loops. With any depth-first-search spanning tree
T , rooted at a vertex r, is associated a (downward towards the root) semilattice order, called the
Tremaux order. Binary relations “T -alike” and “T -opposite” are defined on the set of all cotree
edges of T , solely by conditions involving the Tremaux order relative to (T, r). It is proved that G
is planar if the set of all cotree edges can be partitioned into two classes so that two edges which
are T -alike belong to the same class and two edges which are T -opposite are in different classes.
The proof starts from an embedding of G in the plane such that every pair of edges which cross is
a pair of cotree edges (relative to T) having exactly one crossing point. If G is nonplanar, then
there must exist a special type of “crossing pair” of cotree edges, related to the Tremaux order and
having no common endvertices. Assuming that the cotree edges may be partitioned into two classes
respecting the T -alike and T -opposite relations, it is shown that the set of all such special crossing
pairs may be partitioned into “switching sets”, which allow the embedding to be modified to a
true plane embedding of G (with no crossing of edges). The proof is based on earlier work of W.
T. Tutte, R. B. Levow, Y. Liu, and Rosenstiehl [see Tutte, J. Combin. Theory 8 (1970), 45–53;
Rosenstiehl, Ann. Discrete Math. 9 (1980), 67–78].

See also Fraysseix and Rosenstiehl [FR82]: A depth-first-search characterization of planarity.

13. Little and Sanjith [LS10]: Another characterisation of planar graphs:

Original Abstract: A new characterisation of planar graphs is presented. It concerns the structure
of the cocycle space of a graph, and is motivated by consideration of the dual of an elementary
property enjoyed by sets of circuits in any graph.

14. In 1976 Little [Lit77] conjectured a criterion that was independently proved by Little and
Holton [LH85] No graph has a maximal 3-ring of bonds (based on [LH82]) and Černjak
[Čer80] On Little’s conjecture on planar graphs:

MathSciNet Review of [LH82] by J. Sedláček: A bond is a minimal nonempty edge cut. Let R be a
set of bonds in a graph G. If the edges of G can be oriented so that every bond of R is directed, then
R is said to be consistently orientable. A cyclic sequence of bonds R = (C0, C1, · · · , Cn−1), n ≥ 3, is
called a ring if (i) R is consistently orientable, (ii) Ci ∩Cj 6= ∅ if and only if i = j, i ≡ j+ 1 (modn)
or i ≡ j − 1 (modn), and (iii) no edge belongs to more than two bonds of R. The ring R is said to
be strict if there do not exist distinct bonds A,B,C with B ∈ R, C ∈ R, B ∩ C = ∅, A ⊆ B ∪ C.
The ring R is maximal if there exists no ring R′ = (C ′0, C

′
1, · · · , C ′m−1) with

⋃m−1
k=0 C

′
k ⊆

⋃n−1
i=0 Ci

and m > n. The aim of this paper is to show that every strict maximal ring has an even cardinality.

Theorem. [LH82, Theorem 1] A graph is planar if and only if it has no maximal strict
odd ring of circuits.

Theorem. [Čer80] A graph is non-planar if and only if it contains a maximal exact ring
with an odd numbers of cycles.

4.2 MPS via Kuratowski Subdivisions

The most commonly used ILP formulation for the MPS problem is based on Kuratowski
subdivisions, see Kuratowski [Kur30].

Assume we have a simple, undirected, weighted graph G = (V,E,w) with weights w : E → R.
Let KG be the set of all Kuratowski subdivisions of G. We obtain an MPS by deleting an edge
from each Kuratowski subdivision. We use binary variables xe to denote if edge e is deleted from
G in the resulting MPS. The following formulations results in an MPS of maximum weight (see

70 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

[Mut94, Section 6.1] for details):

min
∑

e∈E
wexe4.1 (4.1a)

x(K) ≥ 1 ∀K ∈ KG (4.1b)

xe ∈ {0, 1} ∀e ∈ E (4.1c)

Here, we denote x(K) :=
∑

e∈K xe.
There exist implementations based on this formulation, e.g., provided by the OGDF [Chi+13].

However, this implementation more general for maximum c-planar subgraphs of clustered graphs
[FCE95] and therefore not efficient for our usecase. We will use a lightweight self implemented
version to compare the different exact algorithms against the formulation (4.1) above. However,
we will also compare our own implementation against the implementation provided by the OGDF.

Implementation Details. Our ILP-based approach uses SCIP [Mah+17, version 4.0.0] and OGDF
[Chi+13, snapshot 2016.12], both using Gurobi [Gur16, version 7.0.2] as LP solver. Note that in
general there is an exponential number of Kuratowski subdivisions in a non-planar graph. Thus
we cannot consider all constraints (4.1b) immediately. We use a cutting-plane method and start
with no constraint of type (4.1b) and successively add new constraints based on the current LP
solution. This method is realizes as constraint handler (SCIP plugin). An implementation of
the Boyer-Myrvold planarity test is used to extract multiple Kuratowski subdivisions at once
[CMS07]. A top killing heap assures that only the most violating constraints are added to the
LP in the Branch&Bound tree. For the root node and in the Branch&Bound process we use an
MPS heuristic to improve the bounds. All parameters to control the implementation details are
explained below.

Definition (top-k killing heap). A binary heap that holds the k elements with the highest
keys and discards the other is called a top-k killing heap. y

The implementation is parameterized by the following five options:

thres: A sequence (t1, . . . , tn) of thresholds that is used to transform an LP solution into an ILP
solution: A solution x̃ for the relaxation of the current problem is mapped to an integer
solution x w.r.t. a threshold t by xe = 1 if and only if x̃e ≥ 1− t.
Based on this transformation the constraint handler checks if the induced ILP solution
is feasible or if there is a Kuratowski subdivision that has to be added. The graph (of
edges e with xe = 0) that is induced by the current LP solution is checked by the Boyer-
Myrvold planarity test for Kuratowski subdivisions. If the graph is non-planar the used
implementation gives a possibly large list of subdivisions. A size-bounded killing heap is
used to filter the result set to the most violated constraints. If the heap is not filled by the
constraints that are extracted using t1 the same process starts with t2 etc. until the heap
is full. We tested the parameters (0.1), (0.5), (0.01, 0.1), (0.1, 0.5) and (0.01, 0.1, 0.5).

heap: The maximum size of the killing heap (as described above). It also controls the maximum
number of extracted subdivisions by the planarity test. At most 5× heap subdivisions are
returned. We tested the parameters 10 and 50.

hcall: An MPS heuristic is used in the Branch&Bound process to find feasible planar subgraphs
(induced by the current LP solution). Possible parameters are: The heuristic is called

hcall = 0: never

hcall = 1: only in the root node as initial feasible solution

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 71

hcall = 2: in the root node and for each new Branch&Bound node

hcall = 3: in the root node and after each new LP solution

hrand: Randomization factor hrand between 0 and 1 of the heuristic: Let w be the weights
of the edges of the input graph. By ŵ we denote the weights normalizes to [0, 1]. The
randomized weights wr are defined as wr(e) = (1− hrand)ŵ(e) + hrand ·X(e), where X(e)
is a real random value in [0, 1] for each edge e.

We tested 0.0 and 0.5 for the randomization factor hrand .

hruns: Randomized heuristics (with hrand > 0) have multiple runs where the final result is the
subgraph with the largest weight over all runs. We tested 1 and 5.

The used heuristic itself is also a free parameter but we did not compare different heuristics
within our B&B algorithm. A recent study shows that the greedy Cactus algorithm [Căl+98]
(extended by a naive approach to maximize the solution) yields the best solutions and has a
good running time on real world graphs, see [CKW16, Observation F1 and Figure 1(c)]. The
implementation is given by MaximalPlanarSubgraphSimple and PlanarSubgraphCactus as part
of the OGDF.

Optimal Parameter Setting. Let now U(p) denote the set of used test values for a given parameter p.
To optimize the parameter setting of the Kuratowski-based ILP we run all 90 variants S:

U(thres) = {thres=0.1, thres=0.5, thres=0.01, 0.1, thres=0.1, 0.5, thres=0.01, 0.1, 0.5}
U(heap) = {heap=10, heap=50}
U(hcall) = {hcall=0, hcall=1, hcall=2, hcall=3}
U(hrand) = {hrand=0.0, hrand=0.5}
U(hruns) = {hruns=1, hruns=5}

S := U(thres)× U(heap)×
(
U(hcall) \ {hcall=0}

)
×(

U(hrand)× U(hruns) \ {(hrand=0.0, hruns=5)}
)

on a random sample of 802 non-planar Rome graphs and all non-planar North graphs. Our C++

code is compiled with GCC 5.3.1-13, and runs on a single core of an Intel(R) Xeon(R) CPU
E5-2430 v2 with DDR3 Memory @ 1600 MHz under Debian 8. We applied a memory limit of 8
GB and a time limit of 20 minutes.

A setting for our own implementation is s ∈ S. Let U denote U(thres)∪U(heap)∪U(hcall)∪
U(hrand) ∪ U(hruns). By I(s) we denote the solved instances with setting s. Using this
notation we investigate two different methods to determine a good parameter choice for our own
implementation.

• Greedy-Max-Solved : The best setting sGMS is defined as sGMS := arg max{|I(s)| : s ∈ S}.
This method to determine good parameters for our implementation simply searches for the
setting s ∈ S with the highest number of solved instances.

• Successive-Stable-Choice: Let u ∈ U be an arbitrary value of one of the parameters
and Su = {s ∈ S | u ∈ s} denote the set of all setting where u is part of the setting.
We are interested in the intersection of the solved instances over all settings in Su, i.e.
I(u) :=

⋂
s∈Su

I(s). A stable value u∗ is defined as u∗ := arg max{|I(u)| : u ∈ U}. The best

setting sSSC is then build by successively picking a stable value, fixing the corresponding
parameter to this value and deleting all values for this parameter from U until all parameters
are fixed.

72 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

thres0.1: 947

heap50: 922

25

hruns1hrand0.0: 917

30

hruns1hrand0.5: 919

28

hruns5hrand0.5: 918

29hcall1: 919

28

hcall2: 918

29

thres0.5: 918

1

thres0.1,0.5: 941

23 heap10: 919

22 19

24

2323

thres0.01,0.1,0.5: 940

22

21 18

23

2222

thres0.01,0.1: 952

34

33 30

35

33

34

33

34

1

2 5

44

2

11

1

2

11

1

hcall3: 925

7

8

Figur4.A e 4.A: The graph of all |I(u)| values for u ∈ U . An arc u→ u′ is drawn if I(u′) (I(u).

heap10: 955

hruns5hrand0.5: 952

3

hcall2: 952

3

heap50: 957

5 5

hruns1hrand0.0: 954

2 2

hruns1hrand0.5: 954

2 2

hcall1: 954

2 2

hcall3: 973

16

21 21

Figur4.B e 4.B: The graph of all |I(u)| values for u ∈ U1.

This method to determine good parameters for our implementation examines if the choice
of a specific parameter is stable. A value u ∈ U for a single parameter is stable if the set of
common solved instances (by all parameter settings u ∈ s ∈ S) is maximum. This way we
answer the question what is the minimal number of solved instances over all settings when
we fix a parameter to a value u ∈ U .

On our test set with 1224, instances the best settings according to GMS are

sGMS
1 := (thres=0.01,0.1, heap=50, hruns=1, hrand=0.5, hcall=3)

and

sGMS
2 := (thres=0.1, heap=10, hruns=1, hrand=0.5, hcall=3)

which both solve 988 instances. The SSC method to determine the best setting results in
sSSC := (thres=0.01,0.1, heap=50, hruns=1, hrand=0.5, hcall=3): The sizes of all I(u) for
u ∈ U are shown in Figure 4.A: The parameter “thres=0.01,0.1” is stable. To determine the next
stable parameter we focus on U1 := U\U(thres) on the settings S1 := {s ∈ S : thres=0.01,0.1 ∈ s}.
The corresponding graphs is shown in Figure 4.B. On this restricted set a stable parameter
is “hcall = 3”. The process continues with Figure 4.C where “hruns=1, hrand=0.5” is stable.
Finally, we only have to consider the parameter heap in Figure 4.D, where heap = 50 is stable.

Thus, in further experiments—where we compare different exact MPS algorithms—we always
use sSSC = sGMS

1 as our parameter setting for the ILP formulation based on Kuratowski
subdivisions.

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 73

heap10: 977 heap50: 975

hruns1hrand0.0: 979hruns1hrand0.5: 985

8 10

hruns5hrand0.5: 980

5

Figur 4.Ce 4.C: The graph of remaining |I(u)| values after fixing thres=0.01,0.1 and hcall = 3.

heap10: 987 heap50: 988

Figur 4.De 4.D: The graph of remaining |I(u)| values after fixing thres=0.01,0.1, hcall = 3, hruns=1, and
hrand=0.5.

A PBS Formulation via Kuratowski Subdivisions. Also as a reference to compare further exact
algorithms we implemented a PBS-based method using Kuratowski subdivisions. We use the
PBS solver Clasp 3.2.1 [Geb+11].

In the beginning no constraints of type (4.1b) are used and the graph is checked for planarity.
Using the same OGDF routines as before we add multiple Kuratowski constraints to the current
PBS formulation until we reach a planar subgraph. Here we use Clasp’s ability to perform
warm-starts.

4.3 Stronger Formulations using Additional Minors

Lipton et al. [Lip+16] consider seven generalizations of almost planar graphs. They consider
the question whether the properties are closed under taking minors. Furthermore, they (try to)
construct the Kuratowski sets for the minor closed properties.

Definition (minor minimal). We say that G is minor minimal P if G has property P but
no proper minor does. y

Lemma. [Lip+16, Corollary 1.3 and 1.4] For any graph property P, there is a corresponding
finite set of minor minimal P graphs. Let Pc be graph property that is closed under taking
minors. Then there is a finite set of minimal non-Pc graphs S such that for any graph G, G
satisfies Pc if and only if G has no minor in S.

Definition (Kuratowski set). When P is minor closed, we say that the set S from above is
the Kuratowski set for P. y

Example. {K5,K3,3} is the Kuratowski set for planarity. y

The generalizations considered by Lipton et al. are:

Definition. A planar graph is

74 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

(a) almost non-planar (AN) if there exist two non-adjacent vertices such that adding an edge
between the vertices yields a non-planar graph.

(b) completely almost non-planar (CAN) if it is not complete and adding an edge between any
pair of non-adjacent vertices yields a non-planar graph.

A graph is

(c) not apex (NA) if, for all vertices v, G− v is non-planar.

(d) not edge apex (NE) if, for all edges e, G− e is non-planar.

(e) not contraction apex (NC) if, for all edges e, G/e is non-planar.

(f) in-completely apex (IA) if there is a vertex v such that G− v is non-planar.

(g) in-completely edge apex (IE) if there is an edge e such that G− e is non-planar.

(h) in-completely contraction apex (IC) if there is an edge e such that G/e is non-planar. y

Some of the generalizations above are of interest for our problem. [Lip+16] contains all minor
minimal IA, IE, and some minor minimal NE and NC graphs. This approach can be used to
consider a larger set than KG when we add further constraints in the B&B process.

Example. Let G be an NE graph. Deleting any edge results in a non-planar graph. Thus, we
have to delete at least two edges from G to obtain a planar graph. y

Assume that MG is a set of graphs satisfying NE, then (4.1) can be strengthen to:

min
∑

e∈E
wexe4.2 (4.2a)

x(K) ≥ 1 ∀K ∈ KG (4.2b)

x(M) ≥ 2 ∀M ∈MG (4.2c)

xe ∈ {0, 1} ∀e ∈ E (4.2d)

It remains an open task to identify suitable graphs for MG based on [Lip+16]. Furthermore,
it is questionable if (4.2) is stronger than (4.1), both in theory and practice.

4.4 Planar Graphs and Total Orders

Based on the planarity criterion by Schnyder [Sch89] we develop in this section an exact algorithm
that does not calculate a rotation system itself, but an embedding with exponentially large
coordinates. We omit the details for the coordinates, as they are presented in [Sch89, Section 4].
Only the edges of the solution are of interest for us.

Definition (poset). A partially ordered set, in short poset, is a pair (S,≺) of a set S together
with strict partial order (transitive, irreflexive, binary relation) ≺. y

According to [Szp30], every poset (S,≺) has a set R of total orders (transitive, antisymmetric,
total, binary relation) on S whose intersection is ≺. This means that x ≺ y if and only if x <i y
for all <i ∈ R.

Definition (realizer, Dushnik-Miller dimension). [DM41] A set of total orders whose in-
tersection is a given poset P is called a realizer of P . The Dushnik-Miller dimension dimP of P
is the minimum cardinality over all realizers of P . y

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 75

Let G = (V,E) be a graph and VE := V ∪ E. We associate a poset PG = (VE ,≺G) to G by

x ≺G y if and only if y = (v, w) ∈ E and x ∈ {v, w}.

The dimension of G is defined as the Dushnik-Miller dimension of PG. The planarity criterion
using total orders is now given by the following theorem.

Theorem. [Sch89, Theorem 4.1 and 6.2] A graph is planar if and only if its dimension is at
most three.

Remark. [Sch89, Example 2.3] A graph with dimension two is a path. A graph with dimension
one is an isolated vertex. Therefore, we will restrict our exact algorithm to check for dimension
three. y

The formulation corresponding to the theorem above can be described as follows. Let se for
e ∈ E denote if e is in the solution (part of the MPS). The binary variables px,y denote if x ≺G y.
We use tix,y, for i ∈ [3], to check if we can build the total orders <i whose intersection is ≺G.

max 4.3
∑

e∈E
w[e]se

s. t. pv,e = se ∀e ∈ E, ∀v ∈ e (4.3a)

pv,e = 0 ∀e ∈ E, ∀v ∈ V : v /∈ e (4.3b)

px,y = 0 ∀(x, y) ∈ (E × E) ∪ (VE × V) (4.3c)

px,y ≤ tix,y ∀i ∈ [3], ∀x, y ∈ VE (4.3d)

px,y ≥ t0x,y + t1x,y + t2x,y − 2 ∀x, y ∈ VE (4.3e)

tix,y + tiy,z − 1 ≤ tix,z ∀i ∈ [3], ∀ pairwise distinct x, y, z ∈ VE (4.3f)

tix,y + tiy,x = 1 ∀i ∈ [3], ∀x 6= y ∈ VE (4.3g)

se, px,y, t
i
x,y ∈ {0, 1} ∀i ∈ [3], ∀e ∈ E, ∀x, y ∈ VE

Theorem 4.4. 4.4Formulation (4.3) solves MPS on graphs that are not a path or an isolated
vertex.

Proof. The idea is to represent a total order on VE but only ensure that their intersection
restricted to the set V ∪ {e ∈ E : se = 1} if the order ≺H for H = G[{e ∈ E : se = 1}].

Here Equations (4.3a)–(4.3c) ensure that p represents ≺G on the subgraph induced by s.
The equality ≺G = <0 ∩<1 ∩<2 is realized by Equation (4.3d) and Equation (4.3e). We only
realize ≺H described above as follows: Let S′ := {e ∈ E : se = 0} be the edges that are not in
H. All elements of S′ occur in the three total orders. To be consistent with (4.3a) the elements
s1, . . . , s|S′| of S′ have to occur as s1 <i s2 <i · · · <i s|S′| and s|S′| <j s|S′|−1 <j · · · <j s1 in two
orders i and j. Thus, for any possible set S of edges in the optimum H we find total orders
consistent with ≺H = <0 ∩<1 ∩<2 where the right term is restricted to V ∪ S.

Finally, each ti has to be a total order: transitive by Equation (4.3f), antisymmetric and
total by Equation (4.3g). Thus, the formulation yields an MPS of G by searching for the largest
subgraph of dimension three. �

The ILP above only implements the basic idea of the presented criterion. We use the following
result to speed-up the exact algorithm:

Lemma 4.5. 4.5[Sch89, Lemma 2.1] A graph G = (V,E) has dimension at most d if and only if
there exists a sequence <1, . . . , <d of total orders on V such that

76 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

1. the intersection of <1, . . . , <d is empty, and

2. for each edge {x, y} ∈ E and each vertex z /∈ {x, y} of G, there is at least one order <i
such that x <i z and y <i z.

The formulation corresponding to the lemma above only uses the tix,y variables restricted to
V together with the se variables.

max4.6
∑

e∈E
w[e]se

s. t. se ≤ a1
e,z + a2

e,z + a3
e,z ∀e = {x, y} ∈ E, ∀z ∈ V : z /∈ e (4.6a)

aie,z ≥ tix,z + tiy,z − 1 ∀i ∈ [3], ∀e = {x, y} ∈ E, ∀z ∈ V : z /∈ e (4.6b)

aie,z ≤ tix,z ∀i ∈ [3], ∀e = {x, y} ∈ E, ∀z ∈ V : z /∈ e (4.6c)

aie,z ≤ tiy,z ∀i ∈ [3], ∀e = {x, y} ∈ E, ∀z ∈ V : z /∈ e (4.6d)

t0x,y + t1x,y + t2x,y ≤ 2 ∀x, y ∈ V (4.6e)

tix,y + tiy,z − 1 ≤ tix,z ∀i ∈ [3], ∀ pairwise distinct x, y, z ∈ V (4.6f)

tix,y + tiy,x = 1 ∀i ∈ [3], ∀x 6= y ∈ V (4.6g)

se, a
i
e,z, t

i
x,y ∈ {0, 1} ∀i ∈ [3], ∀e ∈ E, ∀x, y, z ∈ V

We need auxiliary a-variables to describe ai{x,y},z ≡ tix,z ∧ tiy,z, which is realized by (4.6b), (4.6c)

and (4.6d). Equation (4.6e) checks if the intersection of the total orders is empty. As in the
previous formulation, we need (4.6f) and (4.6g) to ensure that ti represents a total order. Finally,
the constraint (4.6a) equals the second part of Lemma 4.5.

Remark. Note that Inequality (4.6b) is not necessary, since the objective function together with
Inequality (4.6a) will set a-variables to one if possible. y

Remark. To compare the formulations with and without explicit p-variables we use the same
sample of 802 Rome graphs as in Section 4.2 and work on the same hardware. Using formula-
tion (4.3) with p-variables we solve 84 instances. With formulation (4.6) we solve 123 instances.
The set of instances solved by (4.3) is a subset of the instances solved by (4.6). y

The variant where the total orders are restricted to V is very promising for a pseudo-Boolean
SAT formulation since the relaxation of (4.6) is obviously very weak. Our PBS formulation uses
the same variables as above.

max
∑

e∈E
w[e]se

s. t. se ⇔ a1
e,z ∨ a2

e,z ∨ a3
e,z ∀e = {x, y} ∈ E, ∀z ∈ V : z /∈ e

aie,z ⇔ tix,z ∧ tiy,z ∀i ∈ [3], ∀e = {x, y} ∈ E, ∀z ∈ V : z /∈ e
¬t0x,y ∨ ¬t1x,y ∨ ¬t2x,y ∀x, y ∈ V
tix,y + tiy,z − 1 ≤ tix,z ∀i ∈ [3], ∀ pairwise distinct x, y, z ∈ V
tix,y xor t

i
y,x ∀i ∈ [3], ∀x 6= y ∈ V

se, a
i
e,z, t

i
x,y ∈ {true, false} ∀i ∈ [3], ∀e ∈ E, ∀x, y, z ∈ V

The experimental comparison of the ILP and PBS formulation against each other and against
the other formulations of this chapter can be found in Section 4.7.

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 77

Formulations using Betweenness Variables. To omit the introduction of auxiliary variables aie,z
to denote the logical conjunction (4.6b)–(4.6d) we represent the total orders via betweenness
variables. Caprara et al. [Cap+11] present the usage and impact of such variables to represent
total orders.

Notation. Let u,w, x, z be four elements of a set that appear as u <i w <i x <i z in a total
order <i. We write [u,w, x, z]i in short. By [u,w, x, z]⇒i [u,w, x, z] we denote that u <i w <i x
together with w <i x <i z imply that u <i w <i z and u <i x <i z. y

We exchange the total order variables ti with betweenness variables bi. For a triple x, y, z of
vertices we denote by bix,y,z if x <i y <i z holds. The formulation using betweenness variables is:

max 4.7
∑

e∈E
w[e]se

s. t. se ≤
∑

i∈[3]
bix,y,z + biy,x,z ∀e = {x, y} ∈ E, ∀z ∈ V : z /∈ e (4.7a)∑

σ∈Sym(S)
biσ1,σ2,σ3

= 1 ∀i ∈ [3], ∀S := {x, y, z} ⊆ V (4.7b)

biu,w,x + biu,x,z − 1 ≤ biu,w,z ∀i ∈ [3], ∀ p.d. u,w, x, z ∈ V (4.7c)

biu,w,x + biu,x,z − 1 ≤ biw,x,z ∀i ∈ [3], ∀ p.d. u,w, x, z ∈ V (4.7d)

biu,w,x + biw,x,z − 1 ≤ biu,w,z ∀i ∈ [3], ∀ p.d. u,w, x, z ∈ V (4.7e)

biu,w,x + biw,x,z − 1 ≤ biu,x,z ∀i ∈ [3], ∀ p.d. u,w, x, z ∈ V (4.7f)

3∑
i=1

∑
x∈V \{u,w}

biw,u,x + biw,x,u + bix,w,u ≥ 1 ∀ p.d. u,w ∈ V (4.7g)

se, b
i
x,y,z ∈ {0, 1} ∀i ∈ [3], ∀e ∈ E, ∀ p.d. x, y, z ∈ V

For a given edge e = {x, y}, the requirement that there is an ordering <i with x <i z and
y <i z is equivalent to the two possibilities x <i y <i z or y <i x <i z. Thus, Equation (4.7a) is
equivalent to the connection of the a- and t-variables in the formulation (4.6). Equation (4.7b)
prohibits any symmetries in the b-variables. We ensure that the intersection of the induced total
orders is empty by (4.7g): Assume that the intersection of the orders it not empty and we have
u < w in the intersection. This can only happen when

3∑
i=1

∑
x∈V \{u,w}

biw,u,x + biw,x,u + bix,w,u = 0,

as there is no occurrence of a contradicting w <i u <i x, w <i x <i u, or x <i w <i u in any of
the orders <i.

Finally, for four vertices that appear as [u,w, x, y] in an order <i, we have to ensure that
[u,w, x, z]⇒i [u,w, x, z] and [u,w, x, z]⇒i [u,w, x, z], using Equations (4.7c)–(4.7f).

Remark. When using the betweenness approach to represent the three total orders the number
of solved instances (on our set of 802 Rome graphs) drops to 77. y

Constructing Feasible Solutions from Heuristics. Following the same workflow as for the other
exact algorithms we want to construct a feasible solution for our ILP based on a given heuristic.
An obvious connection between our task and Schnyder-layouts [Sch90] is given as follows:

In [Sch89, Section 3] the author defines a connection between so-called three-dimensional
representations <1, <2, <3 on V (a sequence of total orders on V that fulfill only part one of

78 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

Lemma 4.5) and partial orders <∗1, <
∗
2, <

∗
3 on V . The input graph G = (V,E) is decomposed into

three arc disjoint digraphs with arc sets A1, A2, A3, where Ai =
{

(x, y) | {x, y} ∈ E ∧ x <∗i y
}

.
The details are omitted here. [Sch89, Theorem 3.3] shows that each (V,Ai) is a rooted forest.
Such structures are the fundament of Schnyder-layouts.

The OGDF contains an implementation of the algorithm described in [Sch90, Section 8].
However, either the implementation or the trees constructed in [Sch90] itself differ from our
required Ai’s. One could use Section 5 and 6 from [Sch89] to construct the needed Ai’s (and
thus the orders <1, <2, <3). Because of time limits, we refrain from doing so.

PBS Formulation and Parameter Setting. The ILP formulations presented in this section are easily
transformable into PBS formulations. We refrain from explicitly presenting the formulations.

Our evaluation of the different formulations in this section showed that using Lemma 4.5
(compared to representing the partial orders explicitly) and representing total orders in the direct
way (not via betweenness variables) achieves the best performance. We will use this parameter
setting when comparing the formulation based on total orders against other formulations.

4.5 A Formulation based on Theta Graphs

Archdeacon and Širáň [AŠ98] presented a planarity criterion that checks if all cycles in a auxiliary
signed graph contain an even number of edges with a negative sign.

Graphs in this section are simple and undirected. Note that the criterion also works on
graphs with multi-edges.

Definition (claw, theta graph). A claw in a graph is a set of three pairwise adjacent darts.
A claw is rooted at the common incident vertex. A theta graph is a pair of disjoint vertices joined
by three pairwise internally-vertex-disjoint paths. y

A theta graph contains exactly two claws rooted at the two degree-three vertices.

Definition (signature, signed graph, balanced). A signature λ : E → {1,−1} on a graph
is an assignment of a plus or minus sign on each edge. A signed graph is a graph together with
a signature. A cycle in a signed graph is balanced if and only if it contains an even number of
negative edges. A signed graph is balanced if and only if every cycle is balanced. y

Definition (local switch, equivalent). A local switch on a signed graph reverses the sign of
each edge incident with a given vertex. Two signed graphs are equivalent if there is a sequence
of local switches transforming one signature into the other. y

Lemma. A balanced graph is equivalent to one signed with every edge positive.

Proof. Recall Lemma 2.4. Any signature is equivalent to one where the edges in a fixed spanning
tree T are all signed positive. If the edges of T are all positive in a balanced signature, then
every edge not in T is also positive: Otherwise, we would have a cycle using one non-tree edge
with negative sign and tree-edges with positive signs which contradicts to the assumption that
we have a balanced graph. �

There are two embeddings of a theta graph into an oriented plane. These embeddings can be
described in terms of local rotations: cyclic permutations of the half-edges incident with a vertex.
Beginning with a planar embedding of a theta graph, reversing the local rotation at exactly one
degree-three vertex results in a non-planar embedding.

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 79

Definition (signed triple graph ΨG). The signed triple graph ΨG = (C,Θ) of a graph G is
defined as: The vertex set C is all claws of G. Arbitrarily fix a local rotation on each claw. Two
claws are joined by an edge θ ∈ Θ if they lie in a common theta graph τ . The sign of θ is +1 if
the local rotations of the two claws embed τ in the plane. Otherwise, it is −1. y

Theorem. [AŠ98, Theorem 2.1] G is planar if and only if ΨG is balanced.

To use the planarity criterion from above we first describe an exact algorithm that only
tests for planarity. Note that this implies a substantial overhead compared to known linear-time
planarity tests. We will use this planarity test to build an exact algorithm for MPS.

Identifying Theta Graphs. Let G = (V,E) be a given input graph. The set C of all claws in G
can be computed in O(|V |4) time. To construct the edges of ΨG we have to check if there are
three vertex-disjoint paths between pairs of claws. We transform this problem into a max-flow
problem in the split graphs: Pick two claws with roots r1 and r2. Split every vertex that is not
ri into two vertices connected by an edge each. A set of three vertex-disjoint paths from r1 to r2

in G corresponds to a flow with value three in the split graph with unit capacities.
Let c1 and c2 be nodes in ΨG (c1 and c2 is a pair of claws) with roots r1 and r2. They lie in

a common theta graph if there is a r1-r2-flow of value 3 in the following auxiliary directed graph
Gsplit
c1,c2 = (V s, As) with unit capacities:

Let V ′ := V \ {r1, r2}. Each node of v ∈ V ′ is split into v1 and v2. We define V s :=
{r1, r2} ∪ {v1, v2 : v ∈ V ′}. Let N ′(v) denote the neighbors of v in G[V ′]. For each claw ci we
denote its vertices with V (ci) = {ri, v1

i , v
2
i , v

3
i }, where ri is the root of ci. In short, we write

Vci := V (ci) \ {r1}. The dart set of Gsplit
c1,c2 is

As := {r1 → v : v ∈ Vc1} ∪ {v → r2 : v ∈ Vc2} ∪⋃
v∈V ′
{u→ v1 : u ∈ N ′(v)} ∪ {v1 → v2 : v ∈ V ′} ∪

⋃
v∈V ′
{v2 → u : u ∈ N ′(v)}.

Clearly, a 0/1-flow in Gsplit
c1,c2 from r1 to r2 with value 3 is equivalent to a set of three internally

vertex-disjoint r1-r2-paths: A flow of value 3 corresponds to three paths. The paths are internally
vertex-disjoint because we have unit capacities on the darts {v1 → v2 : v ∈ V ′}.

For each claw pair we can check if there is an edge in ΨG by using, e.g., the Ford-Fulkerson
algorithm [FF56] to solve the flow problem above in O(|As|) = O(|E|) time. The graph ΨG can
thus be computed in O(|V |8|E|) time.

Testing Planarity Using Theta Graphs. As in Section 4.4 we use betweenness variables to describe
the rotation system of the input graph G. The basic idea of this planarity test is to ensure that
in each theta graph the betweenness variables of the two corresponding claws are consistent.
If there is a rotation system for G such that the local rotations between all theta graphs are
consistent we have an embedding of G in the plane.

We use variables bvx,y,z for each triple of pairwise different x, y, z ∈ N(v). By bvx,y,z = 1 we
denote that y is somewhere between x and z in the counter-clockwise rotation at v. For each
θ ∈ Θ we write θ1 and θ2 for the two corresponding claws.

80 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

The ILP realizing the planarity test is:

max4.8 1 (4.8a)

s. t. bvx,y,z = bvy,z,x = bvz,x,y = 1− bvx,z,y ∀v ∈ V , p.d. x, y, z ∈ N(v) (4.8b)

bvu,w,x + bvu,x,z − 1 ≤ bvu,w,z ∀v ∈ V , ∀ p.d. u,w, x, z ∈ N(v) (4.8c)

bvu,w,x + bvu,x,z − 1 ≤ bvw,x,z ∀v ∈ V , ∀ p.d. u,w, x, z ∈ N(v) (4.8d)

bvu,w,x + bvw,x,z − 1 ≤ bvu,w,z ∀v ∈ V , ∀ p.d. u,w, x, z ∈ N(v) (4.8e)

bvu,w,x + bvw,x,z − 1 ≤ bvu,x,z ∀v ∈ V , ∀ p.d. u,w, x, z ∈ N(v) (4.8f)

br1
v1
1 ,v

2
1 ,v

3
1

= br2
v1
2 ,v

2
2 ,v

3
2

∀θ = θ1θ2 ∈ Θ (4.8g)

bvx,y,z ∈ {0, 1} ∀v ∈ V , p.d. x, y, z ∈ N(v)

Theorem 4.9.4.9 Formulation (4.8) is a planarity test.

Proof. The constraints (4.8b) realize the symmetries within each local rotation. Furthermore,
(4.8c)–(4.8f) are the betweenness constraints we already know from Section 4.4. Finally, Equa-
tion (4.8g) ensures that the local rotations of both claws of each theta graph are consistent. If
there is a feasible solution for (4.8), each edge in ΨG can be signed with +1 and thus ΨG is
balanced. �

Solving MPS Using Theta Graphs. The formulation above can be extended to solve MPS. For
this, we introduce new variables se for e ∈ E to denote if an edge e is in the solution (se = 1) or
not (se = 0). To find a maximum planar subgraph H of G we maximize over

∑
e∈E se where the

constraints of our MPS formulation are:

• A claw c ∈ C is active in H if
∑

e∈E(c) se = 3.

• A theta graph θ = θ1θ2 ∈ Θ is active in H, if both of its claws θ1 and θ2 are active.

• An active theta graph is in ΨH if there is a flow with value 3 in the extended version of
the flow problem above:

The vertices V s and darts As of the auxiliary graph are constructed in the same way as
before. But instead of using unit capacities, the capacities of darts that correspond to
edges in G have capacity se and the remaining darts have capacity one.

• We reuse the betweenness variables bvx,y,z to represent the rotations around each vertex v.
Again, constraints (4.8b)–(4.8f) ensure that we have feasible rotation system. Note that
we include neighbors u of a vertex v in the rotation around v even if sv→u = 0. The
formulation can be readjusted to only build rotations for neighbors that are adjacent to v
in the solution. But it is also possible to assign them a place in the rotation around v even
we do not use the corresponding edge in the solution.

• A theta graph is called responsible if it is an active theta graph in ΨG and it remains
an active theta graph in ΨH , i.e., it is active in ΨG and there is a flow of value 3 in the
extended flow formulation.

We adapt constraint (4.8g) such that it only ensures that the local rotations of claws in
responsible theta graphs are consistent.

Due to the complexity of the arising formulation we refrain from explicitly giving the
formulation of the exact algorithm based on theta graphs. For the same reason we did not
implement this algorithm.

Note that the presented ILP-based algorithm can easily transformed into a SAT- or PBS-based
algorithm.

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 81

4.6 Euler Characteristic and Simulated Facial Walks

In [Bey+16] we developed exact algorithms for the Minimum Genus Problem. The idea is to find
an embedding with a maximum number of faces. Using the Euler characteristic |V | − |E|+ |F | =
χ = 2− 2g, where |F | is the number of faces and g is the resulting (oriented) genus.

A similar idea is the fundament for the exact algorithm that we present in this section.
A maximum planar subgraph H obviously uses all nodes V of the input graph G = (V,E):
The solution is always a spanning subgraph of the connected input graph. When we search
for a solution H we look for genus zero subgraphs. Using the Euler characteristic we get
|V | − |E(H)|+ |F (H)| = 2, or equivalently

|E(H)| = |F (H)|+ |V | − 2 = |F (H)|+ const.

It follows that searching for a planar subgraph with maximal edge cardinality is equivalent to
the search for a subgraph with maximal edge cardinality that satisfies the Euler characteristic
for genus zero. We therefore simulate the face tracing algorithm with our exact algorithm.

Recall the definitions of facial walks and the face traversal procedure for oriented surfaces
from Section 1.1.3.

For this section we always assume that G = (V,E) is a simple, undirected and connected
graph with edge weights w : E → N.

4.6.1 Exponentially Sized Formulations: Basic ILP and SAT Models

Our formulation is based on finding an embedding with the largest number of faces. It statically
simulates the face tracing algorithm. Note that the solution H can have nodes of degree one.

Let f̄ be an upper bound on the attainable number of faces; see Section 2.2 on how to obtain
a simple linear bound. For each i ∈ [f̄], we have a binary variable xi that is 1 if and only if the
i-th face exists and a binary variable cia, for each a ∈ A, that is 1 if and only if arc a is traversed
by the i-th face. For each vertex v ∈ V and neighbors u,w ∈ N(v), the binary variable pvu,w is
1 if and only if w is the direct successor of u in the rotation at v in the solution. Note that a
feasible assignment of the pv variables correspond to a rotation around v that only considers
neighbors that are adjacent within the solution H. se denotes if the edge e is in the solution H.
For an arc a ∈ A, sa equals se for the corresponding edge e of a.

We define the following short-hand notations:

pv(I × J) :=
∑
i∈I

∑
j∈J

pvi,j , s(I) :=
∑
i∈I

si,

x(I) :=
∑
i∈I

xi, sv(I), := s({v} × I),

cI(J) :=
∑
i∈I

∑
j∈J

cij .

Using the variables and notations defined above our first ILP formulation using facial walks

82 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

is then:

max4.10
∑

e∈E
wese (4.10a)

s. t. x([f̄]) = 2− n+ s(E) (4.10b)

x1 = 1 (4.10c)

xi ≥ xi+1 i = 0, . . . , f̄ − 1 (4.10d)

xi ≤ ci(A)/3 ∀i ∈ [f̄] (4.10e)

cia ≤ xi ∀a ∈ A, i ∈ [f̄] (4.10f)

c[f̄](a) = sa ∀a ∈ A (4.10g)

ci(δ−(v)) = ci(δ+(v)) ∀i ∈ [f̄], v ∈ V (4.10h)

civw ≥ ciuv + pvu,w − 1 ∀i ∈ [f̄], v ∈ V , u,w ∈ N(v) (4.10i)

ciuv ≥ civw + pvu,w − 1 ∀i ∈ [f̄], v ∈ V , u,w ∈ N(v) (4.10j)

pv(u×N(v)) = svu ∀vu ∈ A (4.10k)

pv(N(v)× w) = svw ∀vw ∈ A (4.10l)

pv(U ×N(v)\U) ≥ sv({u, ũ})− 1 ∀v ∈ V , ∅6=U(N(v), u ∈ U , ũ ∈ N(v)\U (4.10m)

pvu,u + svw ≤ 1 ∀v ∈ V , u 6= w ∈ N(v) (4.10n)

se, xi, c
i
a, p

v
u,w ∈ {0, 1} ∀e ∈ E, i ∈ [f̄], a ∈ A, v ∈ V , u,w ∈ N(v)

Theorem. Formulation (4.10) solves MPS.

Proof. The input for the ILP is a weighted simple graph, since it is a non-trivial non-planar-core
of a biconnected component. Thus, we maximize in (4.10a) the weights of the selected edges
in the solution. The Euler characteristic in equation (4.10b) for genus 0 ensures that the set
{e : se = 1} of selected edges resembles a planar graph. W.l.o.g. we have a spanning tree as
a feasible solution, thus we have at least one face, see (4.10c). Inequalities (4.10d) are just
symmetry breaking constraints for the x variables. Constraints (4.10e) ensure that if a face
exists, it traverses at least three arcs; inversely, each arc is traversed by exactly one face due
to (4.10g). An arc can only be used in a face, if the face itself is in the solution, which is realized
by (4.10f). Equalities (4.10h) guarantee that at every vertex of a face i, the number of i-traversed
incoming and outgoing arcs is identical. Inequalities (4.10i) and (4.10j) ensure that arcs uv and
vw are both in the same face if w is the successor of u in the rotation at v. Constraints (4.10k)
and (4.10l) ensure that pv represents a permutation of the vertices in N(v) that are incident to
v in the solution. The permutation itself has to be a single cycle over the neighbors that are
incident to v in the solution. This is achieved by CUT constraints (4.10m) over all subsets of the
neighborhood of each node. In contrast to the formulations for the Minimum Genus Problem,
we have to deal with degree-one nodes in the solution. If a node u is its own successor in the
rotation pv, the node v is a degree-one node in the solution and thus it cannot have additional
outgoing edges. This is realized by (4.10n). �

Some constraints in our initial formulation are redundant:

Lemma 4.11.4.11 Inequalities (4.10n) are contained in the CUT constraints (4.10m) and (4.10k).

Proof. We set U = {u} in (4.10m) which results in

1
(4.10m)

≥ sv({u, ũ})− pv(U ×N(v) \ U) = sv({u, ũ})− pv(u×N(v) \ {u})

= sv({u, ũ})− (pv(u×N(v))− pvu,u) = svu − pv(u×N(v)) + svũ + pvu,u
(4.10k)

= svũ + pvu,u.

The resulting inequalities svũ + pvu,u ≤ 1 ∀ũ ∈ N(v) \ U are equal to (4.10n). �

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 83

Subtour-Elimination Formulation. Inspired by formulations for the k-cardinality tree problem
(k-CTP) (see [Chi+09] for an overview of exact ILP-based algorithms using directed cuts) we use
a generalization of subtour elimination constraints, introduced by [Fis+94, Sect. 3], to replace
the CUT constraints that ensure the permutation pv around v consists of only one cycle.

The k-CTP is to find a minimum weight tree with exactly k edges in a given undirected edge
weighted graph. The formulation based on general subtour elimination constraints (GSEC) is
simple: The binary variables are ze and yv representing if an edge e and a vertex v are part of
the solution, respectively. The problem is then described by

min
∑

e∈E
weze

s. t. z(E(S × S)) ≤ y(S \ {t}) ∀S ⊂ V, |S| ≥ 2, ∀t ∈ S 4.12(4.12a)

z(E) = k

y(V) = k + 1

The GSEC shown in (4.12a) ensure that every proper subset of the solution does not contain a
subtour. The constraints (4.12a) enforce that every set of |S| =: ξ + 1 has at most ξ edges, and
therefore contains no cycle.

The formulation using GSEC for our problem is:

max
∑

e∈E
wese

s. t. (4.10b)–(4.10l)

4.10′pv(U×U)− sv(U\{u}) ≤ 1− svũ ∀v ∈ V , ∅6=U(N(v), u ∈ U , ũ ∈ N(v)\U (4.10m′)

se, xi, c
i
a, p

v
u,w ∈ {0, 1} ∀e ∈ E, i ∈ [f̄], a ∈ A, v ∈ V , u,w ∈ N(v)

The left hand side of (4.10m′) equals (4.12a), but we need a correction term: If there is a neighbor
ũ of v that not in U but the edge vũ is part of the solution, we have to forbid that we have a
subtour inside U .

Theorem 4.13. 4.13The CUT and GSEC formulations for MPS via facial walks have equally strong
LP-relaxations.

Proof. Note that
pv(U × U) = pv(U ×N(v))− pv(U ×N(v) \ U)

by definition and sv(U) = pv(U ×N(v)) by (4.10k). Thus,

pv(U × U)− sv(U \ {u}) ≤ 1− svũ
⇔ [pv(U ×N(v))− pv(U ×N(v) \ U)]− [pv(U ×N(v))− svu] ≤ 1− svũ
⇔ −pv(U ×N(v) \ U) + svu ≤ 1− svũ

for all v ∈ V , ∅ 6= U (N(v), u ∈ U and ũ ∈ N(v) \U . Hence, (4.10m) and (4.10m′) are equal.�

Eliminating the Solution-Variables. The variable space can be reduced as the s- and c-variables
are connected in the following way

se = 1 ⇔ ∃i ∈ [f̄], ∃a ∈ A : E(a) = e and cia = 1.

84 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

We therefore have a formulation using only the face, containment and rotation variables:

max4.14
∑

a∈A
w[E(a)]c[f̄](a) (4.14a)

s. t. (4.10c)−(4.10f), (4.10h)−(4.10j)

2x([f̄]) = 4− 2n+ c[f̄](A) (4.14b)

c[f̄](a) = c[f̄](rev(a)) ∀a ∈ A (4.14c)

c[f̄](a) ≤ 1 ∀a ∈ A (4.14d)

pv(u×N(v)) = c[f̄](vu) ∀vu ∈ A (4.14e)

pv(N(v)× w) = c[f̄](vw) ∀vw ∈ A (4.14f)

pv(U × Ū) ≥ c[f̄]({vu, vũ})− 1 ∀v ∈ V , ∀∅ 6= U (N(v), ∀u ∈ U , ∀ũ ∈ Ū (4.14g)

xi, c
i
a, p

v
u,w ∈ {0, 1} ∀i ∈ [f̄], ∀a ∈ A, ∀v ∈ V , ∀u,w ∈ N(v)

Theorem 4.15.4.15 Let P(4.10) be the polyhedron corresponding to the CUT LP-relaxation and
P(4.14) the polyhedron corresponding to the LP-relaxation of (4.14), that is,

P(4.10) := {(s, x, c, p) ∈ [0, 1]|E|+f̄+f̄ ·|A|+|V |3 : (s, x, c, p) satisfies (4.10)},
P(4.14) := { (x, c, p) ∈ [0, 1]f̄+f̄ ·|A|+|V |3 : (x, c, p) satisfies (4.14)}.

Both formulations have equally strong LP-relaxations, that is, P(4.10) = P+s
(4.14), where P+s

(4.14) is

the projection of P(4.14) onto the (s, x, c, p) variable space. The x, c and p variables are thereby

projected using the identity function and se := c[f̄](A(e))/2 for all e ∈ E.

Proof. We prove equality by showing mutual inclusion:
P(4.10) ⊆ P+s

(4.14): Let (ŝ, x̂, ĉ, p̂) ∈ P(4.10) be arbitrary but fixed. Using Equation (4.10g)

we see that (4.14e), (4.14f) and (4.14g)—the equivalents of (4.10k), (4.10l) and (4.10m)—are
fulfilled because ŝa = ĉ[f̄](a). The Euler characteristic constraint (4.14b) is also satisfied since
(4.10g) holds and the constraint itself is just multiplied by two. Since the right hand side of
(4.10g) is se for e = E({a, rev(a)}) we have that ŝe = ĉ[f̄](a) and ŝe = ĉ[f̄](rev(a)) which shows
(4.14c). Finally, ŝa = ĉ[f̄](a) also ensures c[f̄](a) ≤ 1.
P+s

(4.14) ⊆ P(4.10): Let (x̂, ĉ, p̂) ∈ P(4.14) be arbitrary but fixed and se := ĉ[f̄](A(e))/2 for all

e ∈ E. The term ĉ[f̄](A) equals 2s(E) by the projection, thus the Euler characteristic constraint
(4.10b) is satisfied. The projection together with (4.14c) ensure (4.10g). This also proves that
(4.14e), (4.14f) and (4.14g) hold. �

4.6.2 Polynomially Sized Formulations and Speed-Ups

The size of the formulations presented so far is exponential in the graph size. We need
∑

v∈V 2dv ∈
O(2|V |) many CUT constraints to ensure that the rotations around the vertices consist of exactly
one cycle. As presented in our previous work [Bey+16] a way to reduce the size of the formulation
is to switch to alternative representations of rotation systems. We consider two approaches using
betweenness variables and index variables. Both yield polynomially sized formulations.

Index Reformulation. We introduce binary variables qvj,u that are 1 if and only if u is the j-th
vertex in the rotation at v. It is easy to ensure that the qv-variables form a bijective mapping

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 85

[dv]→ N(v) by ∑
i∈[dv]

qvj,u = 1 ∀v ∈ V, u ∈ N(v), (4.16a)∑
u∈N(v)

qvj,u = 1 ∀v ∈ V, j ∈ [dv]. (4.16b)

There are two possibilities to integrate the new variables in existing formulations using p-variables:

• Connect the p- and q-variables by constraints that ensure the p-variables form a rotation
system on subgraph induced by the edges {e : se = 1} in the solution. Then the remaining
constraints of formulation (4.10) can be re-used.

• Change the constraints (4.16) such that the q-variables only form a rotation on the solution
graph {e : se = 1}. Then we can completely omit the p-variables and connect the q-variables
to the containment variables by

civw ≥ ciuv + (qvj,u + qvj+1,w − 2) ∀i ∈ [f̄], v ∈ V, j ∈ [dv], u, w ∈ N(v),

ciuv ≥ civw + (qvj,u + qvj+1,w − 2) ∀i ∈ [f̄], v ∈ V, j ∈ [dv], u, w ∈ N(v).

Due to our experience with the index reformulation for MGP [Bey+16] we refrain from
implementing this exact algorithm.

Betweenness Reformulation. As in Section 4.4 we use betweenness variables to describe the
rotation system of the input graph G. We use variables bvx,y,z for each triple of pairwise different
x, y, z ∈ N(v). By bvx,y,z = 1 we denote that y is somewhere between x and z in the counter-
clockwise rotation at v.

Note that we can only use betweenness variables to represent the rotations of vertices with
minimum degree three. We therefore split V = V2] V+ := {v ∈ V : dv ≤ 2}] {c ∈ V : dv ≥ 3}.
We delete all pv-variables for vertices v ∈ V+ and only keep them V2.

The formulation using betweenness variables is:

max 4.17
∑

e∈E
wese

s. t. (4.10b)–(4.10h) constraints independent of pv

(4.10i)–(4.10n) but change “V ” to “V2”

(4.8b)–(4.8f) b’s form a rot.-sys.

civw ≥ ciuv +
∑

x∈N(v)\{u,w}
bvu,w,x − (dv − 2) ∀i ∈ [f̄], v ∈ V+, u,w ∈ N(v) (4.17a)

ciuv ≥ civw +
∑

x∈N(v)\{u,w}
bvu,w,x − (dv − 2) ∀i ∈ [f̄], v ∈ V+, u,w ∈ N(v) (4.17b)

se, xi, c
i
a, p

v
u,w ∈ {0, 1} see (4.10), v ∈ V2

bvx,y,z ∈ {0, 1} ∀v ∈ V+, p.d. x, y, z ∈ N(v)

Theorem. Formulation (4.17) is polynomially sized and solves MPS.

Proof. The size of the formulation (4.17) is polynomially bounded as we keep (4.10m) only for
vertices v with dv ≤ 2.

The constraints (4.10b)–(4.10h) are shared with formulation (4.10). Furthermore, we have
a rotation system on all vertices in V2 and the according pv-variables are connected to the

86 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

c-variables as before by (4.10i)–(4.10n). The borrowed constraints (4.8b)–(4.8f) ensure that we
have a rotation system on V+ and thus a rotation system for the whole graph. The connection of
the betweenness variables with the containment variables is done in the two new constraints:

If w is the direct successor of u in the rotation around v (i.e., pvu,w = 1 in formulation (4.17))
we have ∑

x∈N(v)\{u,w}
bvu,w,x = dv − 2.

Thus, the constraints (4.17a) and (4.17b) simulate the face traversal procedure. �

Again, due to our experience with the betweenness reformulation for MGP [Bey+16] we
refrain from implementing this exact algorithm.

Degree Three Vertices. The models presented in the last two paragraphs are reformulations to
achieve polynomially sized formulations. As in our work on MGP algorithms we suppose that
there are several methods to speed-up the algorithms in practice, where the exponential size is
not a problem.

Thus, we take care of the special structure of the neighborhood of degree three vertices. We
redefine V3 := {v ∈ V : dv = 3} and V+ := V \ V3. We use the same formulation (4.10a)–(4.10n)
as above, but we exchange (4.10i)–(4.10n) to work only on V3:

4.10′′ civw ≥ ciuv + pvu,w − 1 ∀i ∈ [f̄], v ∈ V+, u,w ∈ N(v) (4.10i′′)

ciuv ≥ civw + pvu,w − 1 ∀i ∈ [f̄], v ∈ V+, u,w ∈ N(v) (4.10j′′)

pv(u×N(v)) = svu ∀v ∈ V+, vu ∈ A (4.10k′′)

pv(N(v)× w) = svw ∀v ∈ V+, vw ∈ A (4.10l′′)

pv(U × Ū) ≥ sv({u, ũ})− 1 ∀v ∈ V+, ∀∅ 6= U (N(v), ∀u ∈ U , ∀ũ ∈ Ū (4.10m′′)

pvu,u + svw ≤ 1 ∀v ∈ V+, ∀u 6= w ∈ N(v) (4.10n′′)

For a degree three vertex v the variable pv describes if its neighborhood N(v) =: {nv0, nv1, nv2}
appears as nv0 → nv1 → nv2 → nv0 (when pv = 1) or nv0 → nv2 → nv1 → nv0 (when pv = 0). Note that
we have an important difference in the usage of the old pvu,w variables compared to the new pv

variables for degree three nodes: If pvu,w = 1 we have u→ w in the cyclic order of N(v) and both
arcs u→ v and v → w have to be in the solution. The new pv variables describe a rotation of
N(v) independent of if all neighbors are adjacent to v in the solution subgraph.

The equivalents of (4.10i′′) and (4.10j′′)—which are only defined on V+—on V3 are:

4.18 civnv
j+1
≥ cinv

j v
+ (pv − 1) + (svnv

j+1
− 1) ∀i ∈ [f̄], v ∈ V3, j ∈ [3] (4.18a)

cinv
j v
≥ civnv

j+1
+ (pv − 1) + (snv

j v
− 1) ∀i ∈ [f̄], v ∈ V3, j ∈ [3] (4.18b)

civnv
j
≥ cinv

j+1v
− pv + (svnv

j
− 1) ∀i ∈ [f̄], v ∈ V3, j ∈ [3] (4.18c)

cinv
j+1v

≥ civnv
j
− pv + (snv

j+1v
− 1) ∀i ∈ [f̄], v ∈ V3, j ∈ [3] (4.18d)

civnv
j+2
≥ cinv

j v
+ (pv − 1) + (svnv

j+2
− 1)− svnv

j+1
∀i ∈ [f̄], v ∈ V3, j ∈ [3] (4.18e)

cinv
j v
≥ civnv

j+2
+ (pv − 1) + (snv

j v
− 1)− svnv

j+1
∀i ∈ [f̄], v ∈ V3, j ∈ [3] (4.18f)

civnv
j
≥ cinv

j+2v
− pv + (svnv

j
− 1)− svnv

j+1
∀i ∈ [f̄], v ∈ V3, j ∈ [3] (4.18g)

cinv
j+2v

≥ civnv
j
− pv + (svnv

j+2
− 1)− svnv

j+1
∀i ∈ [f̄], v ∈ V3, j ∈ [3] (4.18h)

The new constraints (4.18a)–(4.18d) describe the case where the degree of v in the solution is
also three. Here (4.18a)–(4.18b) are for the pv = 1 case, and (4.18c)–(4.18d) are for the pv = 0

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 87

case. We use (4.18e)–(4.18h) in the same way when the degree of v in the solution is two. There
are no constraints needed for a degree-1 vertex in the solution.

Note that we do not need any further constraints to ensure that the new pv variables on V3

form a rotation system.

Low Degree Vertices. The principle of the last paragraph can be extended to vertices v of
arbitrary fixed degree dv ≥ 4. There are % := (dv − 1)! different rotations. Instead of using
O(d2

v) many variables pvu,w, we introduce dlog2 %e binary variables and represent the index of the
rotation as a binary number. Since this process is coupled with a substantial trade-off of more
complicated and weaker constraints, we refrain from using it for dv ≥ 4.

Other Speed-Ups, PBSs and Final Parameter Setting. In Chapter 2 on the Minimum Genus
Problem we discussed more speed-up techniques. Some of them only apply for SAT/PBS-based
formulations (such as incremental formulations using warm-starts of SAT/PBS-solvers) or are
not necessary in ILP formulations. Remember the paragraph “Binary Face Representations” on
page 30, where we discussed a problem (f2|E| constraints (BCI

1) to prohibit that a dart appears
in multiple facial walks) that only occurs in SAT formulations. The particular problem discussed
in that paragraph can be expressed in a simple ILP constraint (ICI

1).
Note that all formulations presented in this section can easily be transformed into SAT/PBS

formulations. We refrain from explicitly providing the transformed versions as we already did that
in Chapter 2 for the Minimum Genus Problem, where we worked with similar exact algorithms.

Based on the experimental results in [Bey+16], we use the initial formulation (4.10) (without
the unnecessary constraints (4.10n)) with the speed-up method for degree-three vertices. Again,
we use the greedy Cactus algorithm [Căl+98] (extended by a naive approach to make the solution
also a maximal planar subgraph) as initial solution for our formulation.

4.7 Experimental Evaluation: Different Formulations and Overall Practicality

In this section we compare the developed exact algorithms

(1) Kuratowski-based ILP (ILP Kurat.) with threshold sequence 0.01, 0.1, heap size 50 and
one heuristic run after each new LP solution with randomization factor 0.5,

(2) Kuratowski-based PBS (PBS Kurat.) using warm-starts of the PBS solver to iteratively
add new constraints for further Kuratowski subdivisions,

(3) Total Orders-based ILP (ILP Orders) without partial orders and without betweenness
variables,

(4) Total Orders-based PBS (PBS Orders) with the same configuration in (3),

(5) Facial Walks-based ILP (ILP Faces) in the exponentially sized formulation with degree-three
speed-up,

(6) Facial Walks-based PBS (PBS Faces) with the same configuration in (5),

and the implementation for

(7) c-planarity which is already part of the OGDF (OGDF c-planar).

88 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

We used the 8 249 non-planar Rome graphs, 423 non-planar North graphs, 580 non-planar
Expander graphs and 105 non-planar SteinLib instances. See Section 1.4 for details on the
instance sets.

Our C++ code is compiled with GCC 5.3.1-13, and runs on a single core of an Intel(R)
Xeon(R) CPU E5-2430 v2 with DDR3 Memory @ 1600 MHz under Debian 8. We use the ILP
solver SCIP 4.0 with Gurobi 7 as LP solver, the PBS solver Clasp 3.2.1, the OGDF, and apply a
memory limit of 8 GB as well as a time limit of 20 minutes.

MPS Computation Framework. As for the Minimum Genus Problem (see [Bey+16, Section 3]
or Section 2.6 on page 34), we compute the MPS of each biconnected component Bi separately.
For each Bi, we compute the non-planar core (Ci, wi) which yields an instance for the Weighted
Maximum Planar Subgraph Problem with graph Ci and weights wi. See Lemma 1.4.

Results on the Real World Graphs Rome and North. We use the PBS and ILP approaches to
compute the MPS of the Rome and North instances mentioned above. A computation is called
successful if it finished within 20 minutes and used not more than 8 GB memory.

Figures 4.F and 4.E show the success rates for the North and Rome instances, respectively.
In both subfigures (a) we compare the success rates grouped by the number of nodes of the
input graph. For the North and Rome graphs, a group is defined by clustering the number of
nodes to the nearest multiple of 5 and 3, respectively. In both subfigures (b) the groups are
defined by clustering the number of edges to the nearest multiple of 10 and 5 for North and
Rome, respectively. The groups in the remaining subfigures are defined analogously but for the
number of nodes and edges of the non-planar core.

For the Rome graphs (Figure 4.E) the success rates of the different approaches are can be
clearly distinguished from each other. ILP Kurat. has the best performance and is able to solve
more than 90 % of the instances on up to 70 nodes. Surprisingly, the results of its PBS variant
are almost equal to the performance of OGDF c-planar. Instances with up to 55 nodes can
be solved with a high success rate. For both criteria, Total Orders and Facial Walks, the PBS
variant is always superior to the ILP formulation. When we compare the performance against
the number of edges of the input graphs, we get similar results. Here, ILP Kurat. is able to solve
instances on up to 105 edges with a high success rate. When looking at the plots, clustered by
NPC size, the picture becomes clearer.

The results for the North graphs are not as unambiguous as for the Rome graphs. ILP Kurat.
still has the best performance and is able to solve instances on up to 45 nodes and 80 edges with
a high success rate. However, on the North instances, it no longer holds that the PBS variants of
Total Orders and Facial Walks are always as good or better than their ILP counterparts.

In Figure 4.G, we consider the success rates grouped by the density of the graph (|E|/|V |)
and the NPC (|ENPC|/|VNPC|), respectively. On the North instances, the performance for graphs
with NPC density above 2.4 drops significantly. As the NPCs of the Rome graphs are sparse,
we do not discover this pattern on that instance set. We see the same characteristics as in the
figures before.

In Figure 4.H, we compare the average run-times on the set of instances solved by all
algorithms, we call it the common set. Note the differences between, e.g., Figure 4.E(a) and
4.H(b): The common set is significantly smaller than the set of all instances. This results in
surprisingly small run-times. Most of the algorithms with a low success rate found an optimal
solution in a small amount of time or did not find a solution at all. Based on this behavior, we
only focused on the variant with the highest success rate for each criterion in the subfigures (c)
and (d). Here, the sizes of the common set with respect to these four algorithms allow more
accurate statements. We see that ILP Kurat. almost always dominates the other approaches not

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 89

10 20 30 40 50 60 70 80 90 100 110 120 130
0

168

337

506

675

#
in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100 110 120 130
0

25

50

75

100

(a) Rome: success rate per input graph nodes

%
su
cc
es
s

instances

PBS Kurat.

ILP Kurat.

OGDF c-planar

ILP Faces

PBS Faces

ILP Orders

PBS Orders

20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

176

352

528

705

#
in
st
a
n
ce
s

20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

25

50

75

100

(b) Rome: success rate per input graph edges

%
su
cc
es
s

5 10 15 20 25 30 35 40 45 50 55
0

152

304

456

609

#
in
st
an

ce
s

5 10 15 20 25 30 35 40 45 50 55
0

25

50

75

100

(c) Rome: success rate per NPC nodes

%
su
cc
es
s

10 20 30 40 50 60 70 80 90 100 110
0

84

169

253

338

#
in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100 110
0

25

50

75

100

(d) Rome: success rate per NPC edges

%
su
cc
es
s

Figur 4.Ee 4.E: Success rates on the Rome instances. We compare against the number of nodes, edges, NPC
nodes and NPC edges. The number of nodes in (a) is clustered to the nearest multiple of 3. We use the
same clustering with different sizes in the other subfigures: (b) 5, (c) 2, (d) 2. The gray bars show the
number of instances each cluster. The legend of (a) applies to all other subfigures.

90 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

10 20 30 40 50 60 70 80 90 100 110 120 130
0

19

39

58

78

#
in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100 110 120 130
0

25

50

75

100

(a) North: success rate per input graph nodes

%
su
cc
es
s

instances

PBS Kurat.

ILP Kurat.

OGDF c-planar

ILP Faces

PBS Faces

ILP Orders

PBS Orders

20 40 60 80 100 120 140 160 180 200
0

17

34

51

68

#
in
st
an

ce
s

20 40 60 80 100 120 140 160 180 200
0

25

50

75

100

(b) North: success rate per input graph edges

%
su
cc
es
s

5 10 15 20 25 30 35 40 45 50 55 60
0

33

66

99

133

#
in
st
an

ce
s

5 10 15 20 25 30 35 40 45 50 55 60
0

25

50

75

100

(c) North: success rate per NPC nodes

%
su
cc
es
s

20 40 60 80 100 120 140 160 180 200
0

32

64

96

128

#
in
st
a
n
ce
s

20 40 60 80 100 120 140 160 180 200
0

25

50

75

100

(d) North: success rate per NPC edges

%
su
cc
es
s

Figur4.F e 4.F: Success rates on the North instances. We compare against the number of nodes, edges, NPC
nodes and NPC edges. The number of nodes in (a) is clustered to the nearest multiple of 5. We use the
same clustering with different sizes in the other subfigures: (b) 10, (c) 5, (d) 10. The gray bars show the
number of instances each cluster. The legend of (a) applies to all other subfigures.

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 91

1 2 3 4 5
0

29

58

87

117

1 2 3 4 5
0

25

50

75

100

(a) North: success per density

%
su
cc
es
s

instances PBS Kurat. ILP Kurat. OGDF c-planar ILP Faces PBS Faces ILP Orders PBS Orders

2 3 4 5
0

35

71

107

143

#
in
st
an

ce
s

2 3 4 5
0

25

50

75

100

(b) North: success per NPC density

1 1.2 1.4 1.6 1.8 2
0

814

1,628

2,442

3,257

1 1.2 1.4 1.6 1.8 2
0

25

50

75

100

(c) Rome: success per density

%
su
cc
es
s

1.6 1.8 2 2.2
0

663

1,327

1,990

2,654

#
in
st
an

ce
s

1.6 1.8 2 2.2
0

25

50

75

100

(d) Rome: success per NPC density

Figur 4.Ge 4.G: Success rates on the Rome and North instances compared against the density and NPC
density. The results of (a) and (b) are clustered in intervals of length 0.3. The results of (c) and (d) are
clustered in intervals of length 0.1

only in the success rate but also from the run-time point of view. The run-times of the Facial
Walks and Total Orders approaches differ by orders of magnitude compared to ILP Kurat.

Results on the SteinLib and Expander Instances. Tables 4.I and 4.K show the number of solved
instances of the Expander and SteinLib instances, respectively.

We were able to solve almost all Expander instances on 10 vertices with almost all approaches.
Only the performance of the ILP variant for the Facial Walk criterion and PBS Faces on the
configuration (|V | = 10, dv = 6) are significantly worse compared to the other approaches. Our
ILP Kurat. algorithm is able to solve many of the instances on up to 50 nodes. However, we
have the case that we can solve all 20 instances of the configurations (|V | = 20, dv = 4) and
(|V | = 20, dv = 10) but none of the instances with configuration (|V | = 20, dv = 6). The same
behavior occurs for other configurations. The Total Orders and Facial Walk algorithms were not
able to solve an instance on 30 or more nodes.

The one instance on 10 000 nodes that was solved by OGDF’s exact algorithm for c-planarity
is a non-planar graph where OGDF’s algorithm claims one has to delete zero edges to obtain a
MPS. This obviously points out an error in this implementation.

The run-times compared in Table 4.J show that we reach the limit of our algorithms already
for |V | ≤ 20 in this instance class. Also the exponential dependence of the run-time on the input
size becomes visible even on the solved instances. The reason for the surprisingly low run-time
of ILP Orders in the configuration (|V | = 10, dv = 6) is that it solved one instance more than its
PBS variant and it has a disproportionate high run-time only on this single instance. We omit
the results for ILP Faces in this table as the common set including this algorithm would become
to small for accurate statements.

92 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

10 20 30 40 50 60 70 80 90 100 110 120 130
0

9

18

27

37

#
in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100 110 120 130

10−4

10−1

102

(a) North: average run-time per number of nodes on the common solved set

av
g.

ru
n
-t
im

e
(s
ec
)

instances

PBS Kurat.

ILP Kurat.

OGDF c-planar

ILP Faces

PBS Faces

ILP Orders

PBS Orders

10 20 30 40 50 60 70 80 90
0

51

102

153

204

#
in
st
an

ce
s

10 20 30 40 50 60 70 80 90
10−4

10−1

102

(b) Rome: average run-time per number of nodes on the common solved set

av
g.

ru
n
-t
im

e
(s
ec
)

10 20 30 40 50 60 70 80 90 100 110 120 130
0

14

28

42

57

#
in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100 110 120 130
10−3

10−1

101

(c) North: average run-time per number of nodes on the common solved set

av
g.

ru
n
-t
im

e
(s
ec
)

instances

ILP Kurat.

OGDF c-planar

PBS Faces

PBS Orders

10 20 30 40 50 60 70 80 90 100
0

101

202

303

405

#
in
st
a
n
ce
s

10 20 30 40 50 60 70 80 90 100
10−3

100

103

(d) Rome: average run-time per number of nodes on the common solved set

av
g
.
ru
n
-t
im

e
(s
ec
)

Figur4.H e 4.H: Average run-time (in seconds) on the North and Rome instances. We cluster as in Figure 4.F
and 4.E. The legends of (a) and (c) apply to (b) and (d), respectively. In (a) and (b) the common set is
defined with respect to all algorithms. In (c) and (d) the common set is defined only by the variant with
highest success rate for each criterion.

Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem 93

solved instances OGDF Kurat. Orders Faces
|V | dv c-planar ILP PBS ILP PBS ILP PBS

10 4 20 20 20 18 20 3 20
10 6 20 20 20 18 17 2 1
20 4 20 20 18 0 0 0 1
20 10 0 20 0 0 0 0 0
30 4 0 12 0 0 0 0 0
30 20 0 20 0 0 0 0 0
50 40 0 20 0 0 0 0 0

10 000 20 1 0 0 0 0 0 0

Tabl 4.Ie 4.I: Number of solved instances for Expanders. For configurations (|V |, dv) that are omitted, no
algorithm solved any instance. The instance set contains 20 graphs per configuration.

avg. run-time OGDF Kurat. Orders Faces
|V | dv c-planar ILP PBS ILP PBS ILP PBS

10 4 0.0108 0.0094 0.0010 196.2551 0.5858 — 124.9892
10 6 0.9934 0.0295 4.8399 28.0698 193.0456 — —
20 4 15.5954 1.0990 18.4400 — — — —

Tabl 4.Je 4.J: Average run-time (in seconds) for the Expander graphs on the set of instances solved by all
algorithms (except for the variants marked with “—”).

From the 580 tested SteinLib instance we were only able to solve 10 instances via ILP Kurat.
Again, ILP Kurat. dominates all other approaches. No instance of the i080 class was solved.

4.8 Summary and Conclusion

There is a variety of criteria for planarity. We developed and implemented ILP- and PBS-based
exact algorithms based on three criteria: Kuratowski subdivisions, simulating facial walks and
total orders. The latter two allow polynomially sized formulations.

However, our experiments on Rome, North, Expander and SteinLib graphs showed that the
ILP-based exact algorithm using Kuratowski subdivisions dominates all other approaches both
in success rate and run-time. Hence, we were not able to develop a new algorithm that beats the
performance of Kuratowski based formulations.

In some of the formulations we used the experience gained in our work [Bey+16] on the
Minimum Genus Problem to set parameters of our algorithms. It remains an open task to
optimize the parameter settings in such cases.

solved instances OGDF Kurat. Orders Faces
instance class # instances c-planar ILP PBS ILP PBS ILP PBS

B 18 7 9 8 3 3 2 1
single 7 1 1 1 0 1 0 0

Tabl 4.Ke 4.K: Number of solved instances for the SteinLib instance class. No instance of i080 was solved.

94 Chapter 4. Exact Algorithms for the Maximum Planar Subgraph Problem

Still, we did not evaluate all criteria that may be used for practical exact algorithms and
hope that newly derived formulations or entirely new formulations based on other criteria are
able to perform better than the standard approach using Kuratowski subdivisions.

Bibliography 95

Bibliography

[ABL95] Dan Archdeacon, C. Paul Bonnington, and Charles H. C. Little. “An algebraic
characterization of planar graphs.” In: Journal of Graph Theory 19.2 (1995), pp. 237–
250. issn: 0364-9024. doi: 10.1002/jgt.3190190209.

[ALS91] Stefan Arnborg, Jens Lagergren, and Detlef Seese. “Easy Problems for Tree-Decom-
posable Graphs.” In: Journal of Algorithms. Cognition, Informatics and Logic 12.2
(1991), pp. 308–340. issn: 0196-6774. doi: 10.1016/0196-6774(91)90006-K.

[Arc86] Dan Archdeacon. “The Orientable Genus Is Nonadditive.” In: Journal of Graph
Theory 10.3 (1986), pp. 385–401. issn: 0364-9024. doi: 10.1002/jgt.3190100314.

[AŠ98] Dan Archdeacon and Josef Širáň. “Characterizing Planarity Using Theta Graphs.”
In: Journal of Graph Theory 27.1 (1998), pp. 17–20. issn: 0364-9024. doi: 10.1002/
(SICI)1097-0118(199801)27:1<17::AID-JGT4>3.0.CO;2-J.

[Bat+62] Joseph Battle, Frank Harary, Yukihiro Kodama, and John William Theodore Youngs.
“Additivity of the genus of a graph.” In: Bulletin of the American Mathematical Society
68 (1962), pp. 565–568. issn: 0002-9904. doi: 10.1090/S0002-9904-1962-10847-7.

[BD09] Henning Bruhn and Reinhard Diestel. “MacLane’s theorem for arbitrary surfaces.” In:
Journal of Combinatorial Theory. Series B 99.2 (2009), pp. 275–286. issn: 0095-8956.
doi: 10.1016/j.jctb.2008.03.005.

[Bey+16] Stephan Beyer, Markus Chimani, Ivo Hedtke, and Michal Kotrbč́ık. “A Practical
Method for the Minimum Genus of a Graph: Models and Experiments.” In: Ex-
perimental Algorithms - 15th International Symposium, SEA 2016, St. Petersburg,
Russia, June 5-8, 2016, Proceedings. Ed. by Andrew V. Goldberg and Alexander S.
Kulikov. Vol. 9685. Lecture Notes in Computer Science. Springer, 2016, pp. 75–88.
isbn: 978-3-319-38850-2. doi: 10.1007/978-3-319-38851-9_6.

[Bie14] Armin Biere. “Yet another Local Search Solver and Lingeling and Friends Entering
the SAT Competition 2014.” In: Proceedings of SAT Competition 2014: Solver and
Benchmark Descriptions. Ed. by Anton Belov, Daniel Diepold, Marijn J.H. Heule,
and Matti Järvisalo. Series of Publications B B-2014-2. University of Helsinki, Dept.
Comp. Sc. 2014, pp. 39–40. isbn: 978-951-51-0043-6.

[BM04] John M. Boyer and Wendy J. Myrvold. “On the Cutting Edge: Simplified O(n)
Planarity by Edge Addition.” In: Journal of Graph Algorithms and Applications 8.3
(2004), pp. 241–273. issn: 1526-1719. doi: 10.7155/jgaa.00091.

[Bod86] Hans L. Bodlaender. Classes of graphs with bounded tree-width. Tech. rep. RUU-CS-
86-22. Department of Information and Computing Sciences, Utrecht University, 1986.
url: http://www.cs.uu.nl/research/techreps/RUU-CS-86-22.html.

[BR06] Joseph P. Bohanon and Les Reid. “Finite groups with planar subgroup lattices.” In:
Journal of Algebraic Combinatorics. An International Journal 23.3 (2006), pp. 207–
223. issn: 0925-9899. doi: 10.1007/s10801-006-7392-8.

https://doi.org/10.1002/jgt.3190190209
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1002/jgt.3190100314
https://doi.org/10.1002/(SICI)1097-0118(199801)27:1<17::AID-JGT4>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1097-0118(199801)27:1<17::AID-JGT4>3.0.CO;2-J
https://doi.org/10.1090/S0002-9904-1962-10847-7
https://doi.org/10.1016/j.jctb.2008.03.005
https://doi.org/10.1007/978-3-319-38851-9_6
https://doi.org/10.7155/jgaa.00091
http://www.cs.uu.nl/research/techreps/RUU-CS-86-22.html
https://doi.org/10.1007/s10801-006-7392-8

96 Bibliography

[BS88] Matthew G. Brin and Craig C. Squier. “On the Genus of Z3×Z3×Z3.” In: European
Journal of Combinatorics 9.5 (1988), pp. 431–443. issn: 0195-6698. doi: 10.1016/
S0195-6698(88)80002-7.

[Buc+05] Christoph Buchheim, Dietmar Ebner, Michael Jünger, Gunnar W. Klau, Petra
Mutzel, and René Weiskircher. “Exact Crossing Minimization.” In: Graph Drawing,
13th International Symposium, GD 2005, Limerick, Ireland, September 12-14, 2005,
Revised Papers. Ed. by Patrick Healy and Nikola S. Nikolov. Vol. 3843. Lecture
Notes in Computer Science. Springer, 2005, pp. 37–48. isbn: 3-540-31425-3. doi:
10.1007/11618058_4.

[Căl+98] Gruia Călinescu, Cristina Gomes Fernandes, Ulrich Finkler, and Howard Karloff.
“A Better Approximation Algorithm for Finding Planar Subgraphs.” In: Journal
of Algorithms. Cognition, Informatics and Logic 27.2 (1998). 7th Annual ACM-
SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996), pp. 269–302. issn:
0196-6774. doi: 10.1006/jagm.1997.0920.

[Cap+11] Alberto Caprara, Marcus Oswald, Gerhard Reinelt, Robert Schwarz, and Emiliano
Traversi. “Optimal linear arrangements using betweenness variables.” In: Math.
Program. Comput. 3.3 (2011), pp. 261–280. doi: 10.1007/s12532-011-0027-7.

[Cay78] Arthur Cayley. “Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical
Representation.” In: American Journal of Mathematics 1.2 (1878), pp. 174–176. issn:
0002-9327. doi: 10.2307/2369306.

[CCE13] Sergio Cabello, Erin W. Chambers, and Jeff Erickson. “Multiple-source shortest paths
in embedded graphs.” In: SIAM Journal on Computing 42.4 (2013), pp. 1542–1571.
issn: 0097-5397. doi: 10.1137/120864271.

[Čer80] A. A. Černjak. “On Little’s conjecture on planar graphs.” In: Vesc̄ı Akadèmı̄̄ı Navuk
BSSR. Seryja F̄ız̄ıka-Matèmatyčnyh Navuk 2 (1980), pp. 41–45, 140. issn: 0002-3574.

[CG09] Markus Chimani and Carsten Gutwenger. “Non-planar core reduction of graphs.” In:
Discrete Mathematics 309.7 (2009), pp. 1838–1855. issn: 0012-365X. doi: 10.1016/
j.disc.2007.12.078.

[CG15] Marston Conder and Ricardo Grande. “On embeddings of circulant graphs.” In:
Electronic Journal of Combinatorics 22.2 (2015), Paper 2.28, 27. issn: 1077-8926.

[Cha+15] Timothy M. Chan, Fabrizio Frati, Carsten Gutwenger, Anna Lubiw, Petra Mutzel,
and Marcus Schaefer. “Drawing Partially Embedded and Simultaneously Planar
Graphs.” In: Journal of Graph Algorithms and Applications 19.2 (2015), pp. 681–706.
issn: 1526-1719. doi: 10.7155/jgaa.00375.

[Cha02] John Chambers. “Hunting for Torus Obstructions.” M.Sc. thesis. University of
Victoria, 2002.

[Chi+09] Markus Chimani, Maria Kandyba, Ivana Ljubic, and Petra Mutzel. “Obtaining
optimal k -cardinality trees fast.” In: ACM Journal of Experimental Algorithmics
14.5 (2009). doi: 10.1145/1498698.1537600.

[Chi+13] Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten
Klein, and Petra Mutzel. “The Open Graph Drawing Framework (OGDF).” In:
Handbook on Graph Drawing and Visualization. Ed. by Roberto Tamassia. Chapman
and Hall/CRC, 2013, pp. 543–569. isbn: 978-1-5848-8412-5. url: crcpress.com/
Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125.

https://doi.org/10.1016/S0195-6698(88)80002-7
https://doi.org/10.1016/S0195-6698(88)80002-7
https://doi.org/10.1007/11618058_4
https://doi.org/10.1006/jagm.1997.0920
https://doi.org/10.1007/s12532-011-0027-7
https://doi.org/10.2307/2369306
https://doi.org/10.1137/120864271
https://doi.org/10.1016/j.disc.2007.12.078
https://doi.org/10.1016/j.disc.2007.12.078
https://doi.org/10.7155/jgaa.00375
https://doi.org/10.1145/1498698.1537600
crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125

Bibliography 97

[Chi08] Markus Chimani. “Computing Crossing Numbers.” PhD thesis. Department of
Computer Sciene, Technical University Dortmund, 2008. url: http://tcs.uos.de/
_media/pubs/computingcrossingnumbers_phdthesis_chimani_pdf.pdf.

[Chi09] Markus Chimani. “Computing Crossing Numbers.” In: Ausgezeichnete Informatikdis-
sertationen 2008. Ed. by Dorothea Wagner. Vol. D-9. LNI. GI, 2009, pp. 41–50. isbn:
978-3-88579-413-4.

[CHW16] Markus Chimani, Ivo Hedtke, and Tilo Wiedera. “Limits of Greedy Approximation
Algorithms for the Maximum Planar Subgraph Problem.” In: Combinatorial Al-
gorithms - 27th International Workshop, IWOCA 2016, Helsinki, Finland, August
17-19, 2016, Proceedings. Ed. by Veli Mäkinen, Simon J. Puglisi, and Leena Salmela.
Vol. 9843. Lecture Notes in Computer Science. Springer, 2016, pp. 334–346. isbn:
978-3-319-44542-7. doi: 10.1007/978-3-319-44543-4_26.

[CKW16] Markus Chimani, Karsten Klein, and Tilo Wiedera. “A Note on the Practicality of
Maximal Planar Subgraph Algorithms.” In: Proceedings of the 24th International
Symposium on Graph Drawing and Network Visualization (GD 2016). Ed. by Yifan
Hu and Martin Nöllenburg. Vol. abs/1609.02443. CoRR, 2016.

[CL91] Jason (Jingsheng) Cong and C. L. Liu. “On the k-Layer Planar Subset and Topological
Via Minimization Problems.” In: IEEE Trans. on CAD of Integrated Circuits and
Systems 10.8 (1991), pp. 972–981. doi: 10.1109/43.85735.

[CMB08] Markus Chimani, Petra Mutzel, and Immanuel M. Bomze. “A New Approach to
Exact Crossing Minimization.” In: Algorithms - ESA 2008, 16th Annual European
Symposium, Karlsruhe, Germany, September 15-17, 2008. Proceedings. Ed. by Dan
Halperin and Kurt Mehlhorn. Vol. 5193. Lecture Notes in Computer Science. Springer,
2008, pp. 284–296. isbn: 978-3-540-87743-1. doi: 10.1007/978-3-540-87744-8_24.

[CMS07] Markus Chimani, Petra Mutzel, and Jens M. Schmidt. “Efficient Extraction of Mul-
tiple Kuratowski Subdivisions.” In: Graph Drawing, 15th International Symposium,
GD 2007, Sydney, Australia, September 24-26, 2007. Revised Papers. Ed. by Seok-Hee
Hong, Takao Nishizeki, and Wu Quan. Vol. 4875. Lecture Notes in Computer Science.
Springer, 2007, pp. 159–170. isbn: 978-3-540-77536-2. doi: 10.1007/978-3-540-
77537-9_17.

[Col93] Yves Colin de Verdière. “On a new graph invariant and a criterion for planarity.” In:
Graph structure theory (Seattle, WA, 1991). Vol. 147. Contemp. Math. Amer. Math.
Soc., Providence, RI, 1993, pp. 137–147. doi: 10.1090/conm/147/01168.

[Coo+98] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexan-
der Schrijver. Combinatorial Optimization. Wiley-Interscience Series in Discrete
Mathematics and Optimization. 1998, pp. x+355. isbn: 0-471-55894-X.

[CR16] Ricky X. F. Chen and Christian M. Reidys. “On the local genus distribution of graph
embeddings.” In: ArXiv e-prints (Jan. 2016). eprint: 1601.02574.

[CR17] Ricky X. F. Chen and Christian M. Reidys. “On the local genus distribution of
graph embeddings.” In: Journal of Combinatorial Mathematics and Combinatorial
Computing 101 (May 2017), pp. 157–173.

[CS13] Chandra Chekuri and Anastasios Sidiropoulos. “Approximation Algorithms for Euler
Genus and Related Problems.” In: 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. IEEE
Computer Society, 2013, pp. 167–176. isbn: 978-0-7695-5135-7. doi: 10.1109/FOCS.
2013.26.

http://tcs.uos.de/_media/pubs/computingcrossingnumbers_phdthesis_chimani_pdf.pdf
http://tcs.uos.de/_media/pubs/computingcrossingnumbers_phdthesis_chimani_pdf.pdf
https://doi.org/10.1007/978-3-319-44543-4_26
https://doi.org/10.1109/43.85735
https://doi.org/10.1007/978-3-540-87744-8_24
https://doi.org/10.1007/978-3-540-77537-9_17
https://doi.org/10.1007/978-3-540-77537-9_17
https://doi.org/10.1090/conm/147/01168
1601.02574
https://doi.org/10.1109/FOCS.2013.26
https://doi.org/10.1109/FOCS.2013.26

98 Bibliography

[CS17] Parinya Chalermsook and Andreas Schmid. “Finding Triangles for Maximum Pla-
nar Subgraphs.” In: WALCOM: Algorithms and Computation, 11th International
Conference and Workshops, WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017,
Proceedings. Ed. by Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen.
Vol. 10167. Lecture Notes in Computer Science. Springer, 2017, pp. 373–384. isbn:
978-3-319-53924-9. doi: 10.1007/978-3-319-53925-6_29.

[CZ15] Markus Chimani and Robert Zeranski. “Upward Planarity Testing in Practice:
SAT Formulations and Comparative Study.” In: ACM Journal of Experimental
Algorithmics 20 (2015), Article 1.2, 27. doi: 10.1145/2699875.

[Dez+00] Michel Deza, Patrick W. Fowler, A. Rassat, and Kevin M. Rogers. “Fullerenes as
Tilings of Surfaces.” In: Journal of Chemical Information and Computer Sciences
40.3 (2000), pp. 550–558. doi: 10.1021/ci990066h.

[DFF85] M. E. Dyer, L. R. Foulds, and A. M. Frieze. “Analysis of heuristics for finding a
maximum weight planar subgraph.” In: European Journal of Operational Research
20.1 (1985), pp. 102–114. issn: 0377-2217. doi: 10.1016/0377-2217(85)90288-7.

[Di +00] Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamassia, Emanuele
Tassinari, Francesco Vargiu, and Luca Vismara. “Drawing Directed Acyclic Graphs:
An Experimental Study.” In: International Journal of Computational Geometry &
Applications 10.6 (2000), pp. 623–648. doi: 10.1142/S0218195900000358.

[Di +97] Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamassia, Emanuele
Tassinari, and Francesco Vargiu. “An experimental comparison of four graph drawing
algorithms.” In: Computational Geometry. Theory and Applications 7.5-6 (1997).
11th ACM Symposium on Computational Geometry (Vancouver, BC, 1995), pp. 303–
325. doi: 10.1016/S0925-7721(96)00005-3.

[DM41] Ben Dushnik and E. W. Miller. “Partially ordered sets.” In: American Journal of
Mathematics 63 (1941), pp. 600–610. issn: 0002-9327. doi: 10.2307/2371374.

[DP15] Kosta Došen and Zoran Petrić. “A planarity criterion for graphs.” In: SIAM Journal
on Discrete Mathematics 29.4 (2015), pp. 2160–2165. issn: 0895-4801. doi: 10.1137/
140954957.

[DR91] Hristo Djidjev and John H. Reif. “An Efficient Algorithm for the Genus Problem
with Explicit Construction of Forbidden Subgraphs.” In: Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA. Ed. by Cris Koutsougeras and Jeffrey Scott Vitter. ACM, 1991,
pp. 337–347. isbn: 0-89791-397-3. doi: 10.1145/103418.103456.

[Edm60] J. Edmonds. “A combinatorial representation for polyhedral surfaces.” In: Notices of
the American Mathematical Society 7 (1960), p. 646.

[EFN12] Jeff Erickson, Kyle Fox, and Amir Nayyeri. “Global minimum cuts in surface embed-
ded graphs.” In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms. ACM, New York, 2012, pp. 1309–1318. doi: 10.1137/1.
9781611973099.103.

[FC07] Cristina Gomes Fernandes and Gruia Călinescu. “Maximum Planar Subgraph.”
In: Handbook of Approximation Algorithms and Metaheuristics. Ed. by Teofilo F.
Gonzalez. Chapman and Hall/CRC, 2007. isbn: 978-1-58488-550-4. doi: 10.1201/
9781420010749.ch56.

https://doi.org/10.1007/978-3-319-53925-6_29
https://doi.org/10.1145/2699875
https://doi.org/10.1021/ci990066h
https://doi.org/10.1016/0377-2217(85)90288-7
https://doi.org/10.1142/S0218195900000358
https://doi.org/10.1016/S0925-7721(96)00005-3
https://doi.org/10.2307/2371374
https://doi.org/10.1137/140954957
https://doi.org/10.1137/140954957
https://doi.org/10.1145/103418.103456
https://doi.org/10.1137/1.9781611973099.103
https://doi.org/10.1137/1.9781611973099.103
https://doi.org/10.1201/9781420010749.ch56
https://doi.org/10.1201/9781420010749.ch56

Bibliography 99

[FCE95] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. “Planarity for Clustered Graphs.”
In: Algorithms - ESA ’95, Third Annual European Symposium, Corfu, Greece, Septem-
ber 25-27, 1995, Proceedings. Ed. by Paul G. Spirakis. Vol. 979. Lecture Notes in
Computer Science. Springer, 1995, pp. 213–226. isbn: 3-540-60313-1. doi: 10.1007/3-
540-60313-1_145.

[FF56] Lester Randolph Ford Jr. and Delbert Ray Fulkerson. “Maximal flow through a
network.” In: Canadian Journal of Mathematics. Journal Canadien de Mathématiques
8 (1956), pp. 399–404. issn: 0008-414X. doi: 10.4153/CJM-1956-045-5.

[Fil78] I. S. Filotti. “An efficient algorithm for determining whether a cubic graph is toroidal.”
In: Conference Record of the Tenth Annual ACM Symposium on Theory of Computing
(San Diego, Calif., 1978). ACM, New York, 1978, pp. 133–142.

[Fis+94] Matteo Fischetti, Horst W. Hamacher, Kurt Jørnsten, and Francesco Maffioli.
“Weighted k-cardinality trees: Complexity and polyhedral structure.” In: Networks
24.1 (1994), pp. 11–21. doi: 10.1002/net.3230240103.

[FMR79] I. S. Filotti, Gary L. Miller, and John H. Reif. “On Determining the Genus of a
Graph in O(V O(g)) Steps.” In: Proceedings of the 11h Annual ACM Symposium
on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA. Ed. by
Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A. Burkhard, and
Alfred V. Aho. ACM, 1979, pp. 27–37. doi: 10.1145/800135.804395.

[Fou74] Jean Claude Fournier. “Une Relation de Séparation entre Cocircuits d’un Matroide.”
In: Journal of Combinatorial Theory. Series B 16 (1974), pp. 181–190.

[Fox+16] Eli Fox-Epstein, Shay Mozes, Phitchaya Mangpo Phothilimthana, and Christian
Sommer. “Short and simple cycle separators in planar graphs.” In: ACM Journal of
Experimental Algorithmics 21 (2016), Article 2.2, 24. issn: 1084-6654. doi: 10.1145/
2957318.

[FR82] H. de Fraysseix and P. Rosenstiehl. “A depth-first-search characterization of pla-
narity.” In: Graph theory (Cambridge, 1981). Vol. 13. Ann. Discrete Math. North-
Holland, Amsterdam-New York, 1982, pp. 75–80.

[FR85] H. de Fraysseix and P. Rosenstiehl. “A characterization of planar graphs by Trémaux
orders.” In: Combinatorica. An International Journal of the János Bolyai Mathemat-
ical Society 5.2 (1985), pp. 127–135. issn: 0209-9683. doi: 10.1007/BF02579375.

[Geb+11] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Thomas Schneider. “Potassco: The Potsdam Answer Set Solving
Collection.” In: AI Commun. 24.2 (2011), pp. 107–124. doi: 10.3233/AIC-2011-
0491.

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability. A guide to
the theory of NP-completeness. W. H. Freeman and Co., San Francisco, Calif., 1979,
pp. x+338. isbn: 0-7167-1045-5.

[GJ83] Michael R. Garey and David S. Johnson. “Crossing number is NP-complete.” In:
SIAM Journal on Algebraic Discrete Methods 4 (3 1983), pp. 312–316.

[GT87] Jonathan L. Gross and Thomas W. Tucker. Topological graph theory. Wiley-Inter-
science Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc.,
New York, 1987, pp. xvi+351. isbn: 0-471-04926-3.

[Gur16] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2016. url: http:
//www.gurobi.com.

https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1002/net.3230240103
https://doi.org/10.1145/800135.804395
https://doi.org/10.1145/2957318
https://doi.org/10.1145/2957318
https://doi.org/10.1007/BF02579375
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
http://www.gurobi.com
http://www.gurobi.com

100 Bibliography

[Hef91] L. Heffter. “Ueber das Problem der Nachbargebiete.” In: Mathematische Annalen
38.4 (1891), pp. 477–508. issn: 0025-5831. doi: 10.1007/BF01203357.

[Jae79] François Jaeger. “Interval matroids and graphs.” In: Discrete Mathematics 27.3
(1979), pp. 331–336. issn: 0012-365X. doi: 10.1016/0012-365X(79)90167-5.

[JM96] Michael Jünger and Petra Mutzel. “Maximum Planar Subgraphs and Nice Embed-
dings: Practical Layout Tools.” In: Algorithmica. An International Journal in Com-
puter Science 16.1 (1996), pp. 33–59. issn: 0178-4617. doi: 10.1007/s004539900036.

[JMM95] Martin Juvan, Joze Marincek, and Bojan Mohar. “Embedding Graphs in the Torus
in Linear Time.” In: Integer Programming and Combinatorial Optimization, 4th In-
ternational IPCO Conference, Copenhagen, Denmark, May 29-31, 1995, Proceedings.
Ed. by Egon Balas and Jens Clausen. Vol. 920. Lecture Notes in Computer Science.
Springer, 1995, pp. 360–363. isbn: 3-540-59408-6. doi: 10.1007/3-540-59408-6_64.

[JS09] Michael Jünger and Michael Schulz. “Intersection Graphs in Simultaneous Embedding
with Fixed Edges.” In: Journal of Graph Algorithms and Applications 13.2 (2009),
pp. 205–218. issn: 1526-1719. doi: 10.7155/jgaa.00184.

[Jun13] Dieter Jungnickel. Graphs, networks and algorithms. Fourth. Vol. 5. Algorithms
and Computation in Mathematics. Springer, Heidelberg, 2013, pp. xx+675. doi:
10.1007/978-3-642-32278-5.

[Kin92] Nancy G. Kinnersley. “The vertex separation number of a graph equals its path-
width.” In: Information Processing Letters 42.6 (1992), pp. 345–350. issn: 0020-0190.
doi: 10.1016/0020-0190(92)90234-M.

[KKR12] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. “The disjoint paths
problem in quadratic time.” In: Journal of Combinatorial Theory. Series B 102.2
(2012), pp. 424–435. issn: 0095-8956. doi: 10.1016/j.jctb.2011.07.004.

[KMR08] Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce A. Reed. “A Simpler Linear Time
Algorithm for Embedding Graphs into an Arbitrary Surface and the Genus of Graphs
of Bounded Tree-Width.” In: 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA. IEEE
Computer Society, 2008, pp. 771–780. isbn: 978-0-7695-3436-7. doi: 10.1109/FOCS.
2008.53.

[KMV00] T. Koch, A. Martin, and S. Voß. SteinLib: An Updated Library on Steiner Tree
Problems in Graphs. Tech. rep. ZIB-Report 00-37. Takustr. 7, Berlin: Konrad-Zuse-
Zentrum für Informationstechnik Berlin, 2000. url: http://elib.zib.de/steinlib.

[Kow11] Emmanuel Kowalski. Expander graphs. Lecture notes, ETH Zürich. https://people.
math.ethz.ch/~kowalski/lecture-notes.html. 2011.

[KP15] Michal Kotrbč́ık and Tomaž Pisanski. “Genus of the cartesian product of triangles.”
In: Electronic Journal of Combinatorics 22.4 (2015), Paper 4.2, 20. issn: 1077-8926.

[KR96] Jennifer Keir and Bruce Richter. “Walks through every edge exactly twice. II.” In:
Journal of Graph Theory 21.3 (1996), pp. 301–309. issn: 0364-9024. doi: 10.1002/
(SICI)1097-0118(199603)21:3<301::AID-JGT4>3.3.CO;2-S.

[KS15] Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. “Beyond the Euler Character-
istic: Approximating the Genus of General Graphs.” In: Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015. Ed. by Rocco A. Servedio and Ronitt Rubinfeld. ACM,
2015, pp. 675–682. isbn: 978-1-4503-3536-2. doi: 10.1145/2746539.2746583.

https://doi.org/10.1007/BF01203357
https://doi.org/10.1016/0012-365X(79)90167-5
https://doi.org/10.1007/s004539900036
https://doi.org/10.1007/3-540-59408-6_64
https://doi.org/10.7155/jgaa.00184
https://doi.org/10.1007/978-3-642-32278-5
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1109/FOCS.2008.53
https://doi.org/10.1109/FOCS.2008.53
http://elib.zib.de/steinlib
https://people.math.ethz.ch/~kowalski/lecture-notes.html
https://people.math.ethz.ch/~kowalski/lecture-notes.html
https://doi.org/10.1002/(SICI)1097-0118(199603)21:3<301::AID-JGT4>3.3.CO;2-S
https://doi.org/10.1002/(SICI)1097-0118(199603)21:3<301::AID-JGT4>3.3.CO;2-S
https://doi.org/10.1145/2746539.2746583

Bibliography 101

[KS93] Ephraim Korach and Nir Solel. “Tree-width, path-width, and cutwidth.” In: Discrete
Applied Mathematics. The Journal of Combinatorial Algorithms, Informatics and
Computational Sciences 43.1 (1993), pp. 97–101. issn: 0166-218X. doi: 10.1016/
0166-218X(93)90171-J.

[Kur30] Kazimierz Kuratowski. “Sur le problème des courbes gauches en topologie.” In:
Fundamenta Mathematicae 15 (1930), pp. 271–283.

[KV12] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Fifth. Vol. 21. Algorithms and Combinatorics. Springer, Heidelberg, 2012, pp. xx+659.
isbn: 978-3-642-24487-2. doi: 10.1007/978-3-642-24488-9.

[LG79] P. C. Liu and R. C. Geldmacher. “On the deletion of nonplanar edges of a graph.” In:
Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory
and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979). Congress. Numer.,
XXIII–XXIV. Utilitas Math., Winnipeg, Man., 1979, pp. 727–738.

[LH82] C. H. C. Little and D. A. Holton. “Rings of bonds in graphs.” In: Journal of
Combinatorial Theory. Series B 33.1 (1982), pp. 1–6. issn: 0095-8956. doi: 10.1016/
0097-3165(82)90074-7.

[LH85] C. H. C. Little and D. A. Holton. “No graph has a maximal 3-ring of bonds.” In:
Journal of Combinatorial Theory. Series B 38.2 (1985), pp. 139–142. issn: 0095-8956.
doi: 10.1016/0095-8956(85)90079-6.

[Lie01] Annegret Liebers. “Planarizing Graphs - A Survey and Annotated Bibliography.” In:
Journal of Graph Algorithms and Applications 5.1 (2001), pp. 1–74. doi: 10.7155/
jgaa.00032.

[Lip+16] M. Lipton, E. Mackall, T. W. Mattman, M. Pierce, S. Robinson, J. Thomas, and
I. Weinschelbaum. “Six variations on a theme: almost planar graphs.” In: ArXiv
e-prints (Aug. 2016). eprint: 1608.01973.

[Lit77] Charles H. C. Little. “On rings of circuits in planar graphs.” In: (1977), 133–140.
Lecture Notes in Math., Vol. 622.

[LS10] Charles H. C. Little and G. Sanjith. “Another characterisation of planar graphs.” In:
Electronic Journal of Combinatorics 17.1 (2010), Note 15, 7. issn: 1077-8926. url:
http://www.combinatorics.org/Volume_17/Abstracts/v17i1n15.html.

[Mah+17] Stephen J. Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner,
Robert Lion Gottwald, Gregor Hendel, Thorsten Koch, Marco E. Lübbecke, Matthias
Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt,
Sebastian Schenker, Robert Schwarz, Felipe Serrano, Yuji Shinano, Dieter Weninger,
Jonas T. Witt, and Jakob Witzig. The SCIP Optimization Suite 4.0. Tech. rep. 17-12.
Takustr. 7, 14195 Berlin: ZIB, 2017.

[Man83] Anthony Mansfield. “Determining the thickness of graphs is NP-hard.” In: Mathe-
matical Proceedings of the Cambridge Philosophical Society 93 (1983), pp. 9–23.

[MBS12] Sarah McGinnis, Jeremy Berry, and E. J. Sanchez. Subgroup Graphs of Non-Orientable
and Oriented Genus One. Presentation in the Research Experiences for Undergradu-
ates in Mathematics at Missouri State University project supervised by Les Reid.
2012. url: http://people.missouristate.edu/lesreid/reu/2012/PPT/jeremy_
sarah_ej.pdf.

[MK11] Wendy J. Myrvold and William Kocay. “Errors in graph embedding algorithms.” In:
Journal of Computer and System Sciences 77.2 (2011), pp. 430–438. issn: 0022-0000.
doi: 10.1016/j.jcss.2010.06.002.

https://doi.org/10.1016/0166-218X(93)90171-J
https://doi.org/10.1016/0166-218X(93)90171-J
https://doi.org/10.1007/978-3-642-24488-9
https://doi.org/10.1016/0097-3165(82)90074-7
https://doi.org/10.1016/0097-3165(82)90074-7
https://doi.org/10.1016/0095-8956(85)90079-6
https://doi.org/10.7155/jgaa.00032
https://doi.org/10.7155/jgaa.00032
1608.01973
http://www.combinatorics.org/Volume_17/Abstracts/v17i1n15.html
http://people.missouristate.edu/lesreid/reu/2012/PPT/jeremy_sarah_ej.pdf
http://people.missouristate.edu/lesreid/reu/2012/PPT/jeremy_sarah_ej.pdf
https://doi.org/10.1016/j.jcss.2010.06.002

102 Bibliography

[Moh+85] Bojan Mohar, Tomaž Pisanski, Martin Škoviera, and Arthur T. White. “The cartesian
product of three triangles can be embedded into a surface of genus 7.” In: Discrete
Mathematics 56.1 (1985), pp. 87–89. issn: 0012-365X. doi: 10.1016/0012-365X(85)
90197-9.

[Moh96] Bojan Mohar. “Embedding Graphs in an Arbitrary Surface in Linear Time.” In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996. Ed. by Gary L. Miller. ACM,
1996, pp. 392–397. isbn: 0-89791-785-5. doi: 10.1145/237814.237986.

[MPW05] Dragan Marušič, Tomaž Pisanski, and Steve Wilson. “The genus of the GRAY
graph is 7.” In: European Journal of Combinatorics 26.3-4 (2005), pp. 377–385. issn:
0195-6698. doi: 10.1016/j.ejc.2004.01.015.

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins Studies
in the Mathematical Sciences, 2001, pp. xii+291. isbn: 0-8018-6689-8.

[Mut94] Petra Mutzel. “The maximum planar subgraph problem.” PhD thesis. Köln University,
1994.

[Por08] Timo Poranen. “Two New Approximation Algorithms for the Maximum Planar
Subgraph Problem.” In: Acta Cybernetica 18.3 (2008), pp. 503–527. issn: 0324-721X.

[Rin55] Gerhard Ringel. “Über drei kombinatorische Probleme am n-dimensionalen Würfel
und Würfelgitter.” In: Abh. Math. Sem. Univ. Hamburg 20 (1955), pp. 10–19. issn:
0025-5858. doi: 10.1007/BF02960735.

[Rin65a] Gerhard Ringel. “Das Geschlecht des vollständigen paaren Graphen.” In: Abhandlun-
gen aus dem Mathematischen Seminar der Universität Hamburg 28 (1965), pp. 139–
150. issn: 0025-5858. doi: 10.1007/BF02993245.

[Rin65b] Gerhard Ringel. “Der vollständige paare Graph auf nichtorientierbaren Flächen.”
In: Journal für die Reine und Angewandte Mathematik 220 (1965), pp. 88–93. issn:
0075-4102. doi: 10.1515/crll.1965.220.88.

[Rin74] Gerhard Ringel. Map Color Theorem. Die Grundlehren der mathematischen Wis-
senschaften, Band 209. Springer-Verlag, New York-Heidelberg, 1974, pp. xii+191.

[RS83] Neil Robertson and P. D. Seymour. “Graph minors. I. Excluding a forest.” In: Journal
of Combinatorial Theory. Series B 35.1 (1983), pp. 39–61. issn: 0095-8956. doi:
10.1016/0095-8956(83)90079-5.

[Sch12] Peter Schmidt. “Algoritmické vlastnosti vnoreńı grafov do plôch.” in Slovak: Al-
gorithmic properties of embeddings of graphs into surfaces. B.Sc. thesis. Comenius
University, 2012.

[Sch14] Marcus Schaefer. “The Graph Crossing Number and its Variants: A Survey.” In: The
Electronic Journal of Combinatorics Dynamic Survey 21 (2014).

[Sch89] Walter Schnyder. “Planar Graphs and Poset Dimension.” In: Order. A Journal on the
Theory of Ordered Sets and its Applications 5.4 (1989), pp. 323–343. issn: 0167-8094.
doi: 10.1007/BF00353652.

[Sch90] Walter Schnyder. “Embedding Planar Graphs on the Grid.” In: Proceedings of the
First Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1990,
San Francisco, California. Ed. by David S. Johnson. SIAM, 1990, pp. 138–148. isbn:
0-89871-251-3. url: http://dl.acm.org/citation.cfm?id=320176.320191.

https://doi.org/10.1016/0012-365X(85)90197-9
https://doi.org/10.1016/0012-365X(85)90197-9
https://doi.org/10.1145/237814.237986
https://doi.org/10.1016/j.ejc.2004.01.015
https://doi.org/10.1007/BF02960735
https://doi.org/10.1007/BF02993245
https://doi.org/10.1515/crll.1965.220.88
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1007/BF00353652
http://dl.acm.org/citation.cfm?id=320176.320191

Bibliography 103

[SW99] A. Steger and N. C. Wormald. “Generating random regular graphs quickly.” In:
Combinatorics, Probability and Computing 8.4 (1999). Random graphs and combina-
torial structures (Oberwolfach, 1997), pp. 377–396. issn: 0963-5483. doi: 10.1017/
S0963548399003867.

[Szp30] Edward Szpilrajn. “Sur l’extension de l’ordre partiel.” In: Fundamenta Mathematicae
16.1 (1930), pp. 386–389. url: http://eudml.org/doc/212499.

[TDB88] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. “Automatic graph
drawing and readability of diagrams.” In: IEEE Trans. Systems, Man, and Cybernetics
18.1 (1988), pp. 61–79. doi: 10.1109/21.87055.

[Tho80] Carsten Thomassen. “Planarity and Duality of Finite and Infinite Graphs.” In:
Journal of Combinatorial Theory. Series B 29.2 (1980), pp. 244–271. issn: 0095-8956.
doi: 10.1016/0095-8956(80)90083-0.

[Tho89] Carsten Thomassen. “The Graph Genus Problem Is NP-Complete.” In: Journal
of Algorithms. Cognition, Informatics and Logic 10.4 (1989), pp. 568–576. issn:
0196-6774. doi: 10.1016/0196-6774(89)90006-0.

[Tho97] Carsten Thomassen. “The Genus Problem for Cubic Graphs.” In: Journal of Combi-
natorial Theory. Series B 69.1 (1997), pp. 52–58. issn: 0095-8956. doi: 10.1006/
jctb.1996.1721.

[Tut59] William Thomas Tutte. “Matroids and graphs.” In: Transactions of the American
Mathematical Society 90 (1959), pp. 527–552. issn: 0002-9947. doi: 10.2307/1993185.

[Tut63] William Thomas Tutte. “How to draw a graph.” In: Proceedings of the London
Mathematical Society. Third Series 13 (1963), pp. 743–767. issn: 0024-6115. doi:
10.1112/plms/s3-13.1.743.

[Wag37] Klaus Wagner. “Über eine Eigenschaft der ebenen Komplexe.” In: Mathematische
Annalen 114.1 (1937), pp. 570–590. issn: 0025-5831. doi: 10.1007/BF01594196.

[Whi84] Arthur T. White. Graphs, groups and surfaces. Second. Vol. 8. North-Holland Mathe-
matics Studies. North-Holland Publishing Co., Amsterdam, 1984, pp. xiii+314. isbn:
0-444-87643-x.

[Wil93] S. Gill Williamson. “Canonical forms for cycles in bridge graphs.” In: Linear and
Multilinear Algebra 34.3-4 (1993), pp. 301–341. issn: 0308-1087. doi: 10.1080/
03081089308818229.

[You63] John William Theodore Youngs. “Minimal Imbeddings and the Genus of a Graph.”
In: J. Math. Mech. 12.2 (1963), pp. 303–315.

https://doi.org/10.1017/S0963548399003867
https://doi.org/10.1017/S0963548399003867
http://eudml.org/doc/212499
https://doi.org/10.1109/21.87055
https://doi.org/10.1016/0095-8956(80)90083-0
https://doi.org/10.1016/0196-6774(89)90006-0
https://doi.org/10.1006/jctb.1996.1721
https://doi.org/10.1006/jctb.1996.1721
https://doi.org/10.2307/1993185
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1007/BF01594196
https://doi.org/10.1080/03081089308818229
https://doi.org/10.1080/03081089308818229

	Introduction
	Mathematical Preliminaries
	Graph Theory
	Group Theory
	Surfaces, Embeddings, Facial Walks and the Face Traversal Procedure
	Linear Programming and Satisfiability Formulations
	Approximation Algorithms

	Motivation
	Overview
	Test Instances and Used Frameworks

	Exact Algorithms for the Minimum Genus Problem
	Introduction
	Basic Ideas for SAT and ILP Formulations
	Exponentially Sized Formulations: Basic ILP and SAT Models
	Polynomially Sized Formulations: Index and Betweenness Reformulation
	Speed-Up Techniques
	A Minimum Genus Computation Framework
	Experimental Evaluation: Different Formulations, Overall Practicality, and Comparison to Existing Genus Computations
	Minimum Genus on Non-Orientable Surfaces
	Conclusion and Open Problems

	Limits of Greedy Approximation Algorithms for the Maximum Planar Subgraph Problem
	Introduction
	Maximality
	Algorithms Inspired by Planarity Tests
	MPS is NP-hard: A Simple Proof
	Algorithms Inspired by Cactus Structures
	Algorithms Based on Decomposition
	Alternative Proof for the Cactus Algorithm
	Summary and Conclusion

	Exact Algorithms for the Maximum Planar Subgraph Problem
	A Summary of Known Planarity Criteria
	MPS via Kuratowski Subdivisions
	Stronger Formulations using Additional Minors
	Planar Graphs and Total Orders
	A Formulation based on Theta Graphs
	Euler Characteristic and Simulated Facial Walks
	Exponentially Sized Formulations: Basic ILP and SAT Models
	Polynomially Sized Formulations and Speed-Ups

	Experimental Evaluation: Different Formulations and Overall Practicality
	Summary and Conclusion

	Bibliography

